MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopval Structured version   Visualization version   Unicode version

Theorem utopval 22036
Description: The topology induced by a uniform structure  U. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
utopval  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a } )
Distinct variable groups:    v, a, x, U    X, a, x
Allowed substitution hint:    X( v)

Proof of Theorem utopval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 df-utop 22035 . . 3  |- unifTop  =  ( u  e.  U. ran UnifOn  |->  { a  e.  ~P dom  U. u  |  A. x  e.  a  E. v  e.  u  ( v " { x } ) 
C_  a } )
21a1i 11 . 2  |-  ( U  e.  (UnifOn `  X
)  -> unifTop  =  ( u  e.  U. ran UnifOn  |->  { a  e.  ~P dom  U. u  |  A. x  e.  a  E. v  e.  u  ( v " { x } ) 
C_  a } ) )
3 simpr 477 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  u  =  U )
43unieqd 4446 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  U. u  =  U. U )
54dmeqd 5326 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  dom  U. u  =  dom  U. U )
6 ustbas2 22029 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  dom  U. U )
76adantr 481 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  X  =  dom  U. U )
85, 7eqtr4d 2659 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  dom  U. u  =  X )
98pweqd 4163 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  ~P dom  U. u  =  ~P X )
103rexeqdv 3145 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  ( E. v  e.  u  ( v " {
x } )  C_  a 
<->  E. v  e.  U  ( v " {
x } )  C_  a ) )
1110ralbidv 2986 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  ( A. x  e.  a  E. v  e.  u  ( v " {
x } )  C_  a 
<-> 
A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a ) )
129, 11rabeqbidv 3195 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  { a  e.  ~P dom  U. u  |  A. x  e.  a  E. v  e.  u  ( v " { x } ) 
C_  a }  =  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " { x } ) 
C_  a } )
13 elrnust 22028 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U  e.  U.
ran UnifOn )
14 elfvex 6221 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
15 pwexg 4850 . . 3  |-  ( X  e.  _V  ->  ~P X  e.  _V )
16 rabexg 4812 . . 3  |-  ( ~P X  e.  _V  ->  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a }  e.  _V )
1714, 15, 163syl 18 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  (
v " { x } )  C_  a }  e.  _V )
182, 12, 13, 17fvmptd 6288 1  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   dom cdm 5114   ran crn 5115   "cima 5117   ` cfv 5888  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ust 22004  df-utop 22035
This theorem is referenced by:  elutop  22037  utoptop  22038  utopbas  22039  utopsnneiplem  22051  psmetutop  22372
  Copyright terms: Public domain W3C validator