MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elutop Structured version   Visualization version   Unicode version

Theorem elutop 22037
Description: Open sets in the topology induced by an uniform structure  U on  X (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
elutop  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  (unifTop `  U )  <->  ( A  C_  X  /\  A. x  e.  A  E. v  e.  U  (
v " { x } )  C_  A
) ) )
Distinct variable groups:    x, v, A    v, U, x    x, X
Allowed substitution hint:    X( v)

Proof of Theorem elutop
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 utopval 22036 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  { a  e.  ~P X  |  A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a } )
21eleq2d 2687 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  (unifTop `  U )  <->  A  e.  { a  e. 
~P X  |  A. x  e.  a  E. v  e.  U  (
v " { x } )  C_  a } ) )
3 sseq2 3627 . . . . . 6  |-  ( a  =  A  ->  (
( v " {
x } )  C_  a 
<->  ( v " {
x } )  C_  A ) )
43rexbidv 3052 . . . . 5  |-  ( a  =  A  ->  ( E. v  e.  U  ( v " {
x } )  C_  a 
<->  E. v  e.  U  ( v " {
x } )  C_  A ) )
54raleqbi1dv 3146 . . . 4  |-  ( a  =  A  ->  ( A. x  e.  a  E. v  e.  U  ( v " {
x } )  C_  a 
<-> 
A. x  e.  A  E. v  e.  U  ( v " {
x } )  C_  A ) )
65elrab 3363 . . 3  |-  ( A  e.  { a  e. 
~P X  |  A. x  e.  a  E. v  e.  U  (
v " { x } )  C_  a } 
<->  ( A  e.  ~P X  /\  A. x  e.  A  E. v  e.  U  ( v " { x } ) 
C_  A ) )
72, 6syl6bb 276 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  (unifTop `  U )  <->  ( A  e.  ~P X  /\  A. x  e.  A  E. v  e.  U  ( v " {
x } )  C_  A ) ) )
8 elex 3212 . . . . 5  |-  ( A  e.  ~P X  ->  A  e.  _V )
98a1i 11 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  ~P X  ->  A  e.  _V ) )
10 elfvex 6221 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
1110adantr 481 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  X  e.  _V )
12 simpr 477 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  C_  X )
1311, 12ssexd 4805 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
1413ex 450 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  C_  X  ->  A  e.  _V ) )
15 elpwg 4166 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
1615a1i 11 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  _V  ->  ( A  e.  ~P X  <->  A  C_  X
) ) )
179, 14, 16pm5.21ndd 369 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  ~P X  <->  A  C_  X
) )
1817anbi1d 741 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( ( A  e.  ~P X  /\  A. x  e.  A  E. v  e.  U  ( v " {
x } )  C_  A )  <->  ( A  C_  X  /\  A. x  e.  A  E. v  e.  U  ( v " { x } ) 
C_  A ) ) )
197, 18bitrd 268 1  |-  ( U  e.  (UnifOn `  X
)  ->  ( A  e.  (unifTop `  U )  <->  ( A  C_  X  /\  A. x  e.  A  E. v  e.  U  (
v " { x } )  C_  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   "cima 5117   ` cfv 5888  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ust 22004  df-utop 22035
This theorem is referenced by:  utoptop  22038  utopbas  22039  restutop  22041  restutopopn  22042  ucncn  22089
  Copyright terms: Public domain W3C validator