MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneiplem Structured version   Visualization version   Unicode version

Theorem utopsnneiplem 22051
Description: The neighborhoods of a point  P for the topology induced by an uniform space  U. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypotheses
Ref Expression
utoptop.1  |-  J  =  (unifTop `  U )
utopsnneip.1  |-  K  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
utopsnneip.2  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
utopsnneiplem  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  (
( nei `  J
) `  { P } )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
Distinct variable groups:    p, a, K    N, a, p    v, p, P    v, a, U, p    X, a, p, v
Allowed substitution hints:    P( a)    J( v, p, a)    K( v)    N( v)

Proof of Theorem utopsnneiplem
Dummy variables  b 
q  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . . . . . . . 8  |-  J  =  (unifTop `  U )
2 utopval 22036 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  { a  e.  ~P X  |  A. p  e.  a  E. w  e.  U  ( w " {
p } )  C_  a } )
31, 2syl5eq 2668 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  J  =  { a  e.  ~P X  |  A. p  e.  a  E. w  e.  U  ( w " { p } ) 
C_  a } )
4 simpll 790 . . . . . . . . . . 11  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  ->  U  e.  (UnifOn `  X ) )
5 simpr 477 . . . . . . . . . . . . 13  |-  ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  -> 
a  e.  ~P X
)
65elpwid 4170 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  -> 
a  C_  X )
76sselda 3603 . . . . . . . . . . 11  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  ->  p  e.  X )
8 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  p  e.  X )
9 mptexg 6484 . . . . . . . . . . . . . . . 16  |-  ( U  e.  (UnifOn `  X
)  ->  ( v  e.  U  |->  ( v
" { p }
) )  e.  _V )
10 rnexg 7098 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  U  |->  ( v " { p } ) )  e. 
_V  ->  ran  ( v  e.  U  |->  ( v
" { p }
) )  e.  _V )
119, 10syl 17 . . . . . . . . . . . . . . 15  |-  ( U  e.  (UnifOn `  X
)  ->  ran  ( v  e.  U  |->  ( v
" { p }
) )  e.  _V )
1211adantr 481 . . . . . . . . . . . . . 14  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  _V )
13 utopsnneip.2 . . . . . . . . . . . . . . 15  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
1413fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( p  e.  X  /\  ran  ( v  e.  U  |->  ( v " {
p } ) )  e.  _V )  -> 
( N `  p
)  =  ran  (
v  e.  U  |->  ( v " { p } ) ) )
158, 12, 14syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( N `  p )  =  ran  ( v  e.  U  |->  ( v " { p } ) ) )
1615eleq2d 2687 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
a  e.  ( N `
 p )  <->  a  e.  ran  ( v  e.  U  |->  ( v " {
p } ) ) ) )
17 vex 3203 . . . . . . . . . . . . 13  |-  a  e. 
_V
18 eqid 2622 . . . . . . . . . . . . . 14  |-  ( v  e.  U  |->  ( v
" { p }
) )  =  ( v  e.  U  |->  ( v " { p } ) )
1918elrnmpt 5372 . . . . . . . . . . . . 13  |-  ( a  e.  _V  ->  (
a  e.  ran  (
v  e.  U  |->  ( v " { p } ) )  <->  E. v  e.  U  a  =  ( v " {
p } ) ) )
2017, 19ax-mp 5 . . . . . . . . . . . 12  |-  ( a  e.  ran  ( v  e.  U  |->  ( v
" { p }
) )  <->  E. v  e.  U  a  =  ( v " {
p } ) )
2116, 20syl6bb 276 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
a  e.  ( N `
 p )  <->  E. v  e.  U  a  =  ( v " {
p } ) ) )
224, 7, 21syl2anc 693 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  ->  ( a  e.  ( N `  p )  <->  E. v  e.  U  a  =  ( v " { p } ) ) )
23 nfv 1843 . . . . . . . . . . . . 13  |-  F/ v ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )
24 nfre1 3005 . . . . . . . . . . . . 13  |-  F/ v E. v  e.  U  a  =  ( v " { p } )
2523, 24nfan 1828 . . . . . . . . . . . 12  |-  F/ v ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )
26 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )  /\  v  e.  U )  /\  a  =  ( v " { p } ) )  ->  v  e.  U )
27 eqimss2 3658 . . . . . . . . . . . . . 14  |-  ( a  =  ( v " { p } )  ->  ( v " { p } ) 
C_  a )
2827adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )  /\  v  e.  U )  /\  a  =  ( v " { p } ) )  ->  ( v " { p } ) 
C_  a )
29 imaeq1 5461 . . . . . . . . . . . . . . 15  |-  ( w  =  v  ->  (
w " { p } )  =  ( v " { p } ) )
3029sseq1d 3632 . . . . . . . . . . . . . 14  |-  ( w  =  v  ->  (
( w " {
p } )  C_  a 
<->  ( v " {
p } )  C_  a ) )
3130rspcev 3309 . . . . . . . . . . . . 13  |-  ( ( v  e.  U  /\  ( v " {
p } )  C_  a )  ->  E. w  e.  U  ( w " { p } ) 
C_  a )
3226, 28, 31syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )  /\  v  e.  U )  /\  a  =  ( v " { p } ) )  ->  E. w  e.  U  ( w " { p } ) 
C_  a )
33 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )  ->  E. v  e.  U  a  =  ( v " {
p } ) )
3425, 32, 33r19.29af 3076 . . . . . . . . . . 11  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. v  e.  U  a  =  ( v " { p } ) )  ->  E. w  e.  U  ( w " { p } ) 
C_  a )
354ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  U  e.  (UnifOn `  X ) )
367ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  p  e.  X )
3735, 36jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  ( U  e.  (UnifOn `  X )  /\  p  e.  X
) )
38 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  ( w " { p } ) 
C_  a )
396ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  a  C_  X )
40 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  w  e.  U )
41 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( w
" { p }
)  =  ( w
" { p }
)
42 imaeq1 5461 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  w  ->  (
u " { p } )  =  ( w " { p } ) )
4342eqeq2d 2632 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  w  ->  (
( w " {
p } )  =  ( u " {
p } )  <->  ( w " { p } )  =  ( w " { p } ) ) )
4443rspcev 3309 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  U  /\  ( w " {
p } )  =  ( w " {
p } ) )  ->  E. u  e.  U  ( w " {
p } )  =  ( u " {
p } ) )
4541, 44mpan2 707 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  U  ->  E. u  e.  U  ( w " { p } )  =  ( u " { p } ) )
4645adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  w  e.  U )  ->  E. u  e.  U  ( w " { p } )  =  ( u " { p } ) )
47 vex 3203 . . . . . . . . . . . . . . . . . . 19  |-  w  e. 
_V
4847imaex 7104 . . . . . . . . . . . . . . . . . 18  |-  ( w
" { p }
)  e.  _V
4913ustuqtoplem 22043 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  (
w " { p } )  e.  _V )  ->  ( ( w
" { p }
)  e.  ( N `
 p )  <->  E. u  e.  U  ( w " { p } )  =  ( u " { p } ) ) )
5048, 49mpan2 707 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
( w " {
p } )  e.  ( N `  p
)  <->  E. u  e.  U  ( w " {
p } )  =  ( u " {
p } ) ) )
5150adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  w  e.  U )  ->  (
( w " {
p } )  e.  ( N `  p
)  <->  E. u  e.  U  ( w " {
p } )  =  ( u " {
p } ) ) )
5246, 51mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  w  e.  U )  ->  (
w " { p } )  e.  ( N `  p ) )
5335, 36, 40, 52syl21anc 1325 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  ( w " { p } )  e.  ( N `  p ) )
54 sseq1 3626 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( w " { p } )  ->  ( b  C_  a 
<->  ( w " {
p } )  C_  a ) )
55543anbi2d 1404 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( w " { p } )  ->  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  b  C_  a  /\  a  C_  X )  <->  ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  (
w " { p } )  C_  a  /\  a  C_  X ) ) )
56 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( w " { p } )  ->  ( b  e.  ( N `  p
)  <->  ( w " { p } )  e.  ( N `  p ) ) )
5755, 56anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( w " { p } )  ->  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  b  C_  a  /\  a  C_  X )  /\  b  e.  ( N `  p
) )  <->  ( (
( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  (
w " { p } )  C_  a  /\  a  C_  X )  /\  ( w " { p } )  e.  ( N `  p ) ) ) )
5857imbi1d 331 . . . . . . . . . . . . . . 15  |-  ( b  =  ( w " { p } )  ->  ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  b  C_  a  /\  a  C_  X
)  /\  b  e.  ( N `  p ) )  ->  a  e.  ( N `  p ) )  <->  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  (
w " { p } )  C_  a  /\  a  C_  X )  /\  ( w " { p } )  e.  ( N `  p ) )  -> 
a  e.  ( N `
 p ) ) ) )
5913ustuqtop1 22045 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  b  C_  a  /\  a  C_  X
)  /\  b  e.  ( N `  p ) )  ->  a  e.  ( N `  p ) )
6048, 58, 59vtocl 3259 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  ( w " { p } ) 
C_  a  /\  a  C_  X )  /\  (
w " { p } )  e.  ( N `  p ) )  ->  a  e.  ( N `  p ) )
6137, 38, 39, 53, 60syl31anc 1329 . . . . . . . . . . . . 13  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  a  e.  ( N `  p ) )
6237, 21syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  ( a  e.  ( N `  p
)  <->  E. v  e.  U  a  =  ( v " { p } ) ) )
6361, 62mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  a  e.  ~P X )  /\  p  e.  a )  /\  w  e.  U )  /\  (
w " { p } )  C_  a
)  ->  E. v  e.  U  a  =  ( v " {
p } ) )
6463r19.29an 3077 . . . . . . . . . . 11  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  /\  E. w  e.  U  (
w " { p } )  C_  a
)  ->  E. v  e.  U  a  =  ( v " {
p } ) )
6534, 64impbida 877 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  ->  ( E. v  e.  U  a  =  ( v " { p } )  <->  E. w  e.  U  ( w " { p } ) 
C_  a ) )
6622, 65bitrd 268 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  /\  p  e.  a )  ->  ( a  e.  ( N `  p )  <->  E. w  e.  U  ( w " {
p } )  C_  a ) )
6766ralbidva 2985 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  a  e.  ~P X )  -> 
( A. p  e.  a  a  e.  ( N `  p )  <->  A. p  e.  a  E. w  e.  U  ( w " {
p } )  C_  a ) )
6867rabbidva 3188 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p
) }  =  {
a  e.  ~P X  |  A. p  e.  a  E. w  e.  U  ( w " {
p } )  C_  a } )
693, 68eqtr4d 2659 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  J  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) } )
70 utopsnneip.1 . . . . . 6  |-  K  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
7169, 70syl6eqr 2674 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  J  =  K )
7271fveq2d 6195 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( nei `  J )  =  ( nei `  K ) )
7372fveq1d 6193 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( ( nei `  J ) `  { P } )  =  ( ( nei `  K
) `  { P } ) )
7473adantr 481 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  (
( nei `  J
) `  { P } )  =  ( ( nei `  K
) `  { P } ) )
7513ustuqtop0 22044 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  N : X
--> ~P ~P X )
7613ustuqtop1 22045 . . . . 5  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  b  e.  ( N `  p ) )
7713ustuqtop2 22046 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
7813ustuqtop3 22047 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
7913ustuqtop4 22048 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. q  e.  b  a  e.  ( N `  q ) )
8013ustuqtop5 22049 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
8170, 75, 76, 77, 78, 79, 80neiptopnei 20936 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  N  =  ( p  e.  X  |->  ( ( nei `  K
) `  { p } ) ) )
8281adantr 481 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  N  =  ( p  e.  X  |->  ( ( nei `  K ) `  {
p } ) ) )
83 simpr 477 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  /\  p  =  P )  ->  p  =  P )
8483sneqd 4189 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  /\  p  =  P )  ->  { p }  =  { P } )
8584fveq2d 6195 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  /\  p  =  P )  ->  (
( nei `  K
) `  { p } )  =  ( ( nei `  K
) `  { P } ) )
86 simpr 477 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  P  e.  X )
87 fvexd 6203 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  (
( nei `  K
) `  { P } )  e.  _V )
8882, 85, 86, 87fvmptd 6288 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  ( N `  P )  =  ( ( nei `  K ) `  { P } ) )
89 mptexg 6484 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  ( v  e.  U  |->  ( v
" { P }
) )  e.  _V )
90 rnexg 7098 . . . . 5  |-  ( ( v  e.  U  |->  ( v " { P } ) )  e. 
_V  ->  ran  ( v  e.  U  |->  ( v
" { P }
) )  e.  _V )
9189, 90syl 17 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ran  ( v  e.  U  |->  ( v
" { P }
) )  e.  _V )
9291adantr 481 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )
9313a1i 11 . . . 4  |-  ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )  ->  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v
" { p }
) ) ) )
94 nfv 1843 . . . . . . . 8  |-  F/ v  P  e.  X
95 nfmpt1 4747 . . . . . . . . . 10  |-  F/_ v
( v  e.  U  |->  ( v " { P } ) )
9695nfrn 5368 . . . . . . . . 9  |-  F/_ v ran  ( v  e.  U  |->  ( v " { P } ) )
9796nfel1 2779 . . . . . . . 8  |-  F/ v ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V
9894, 97nfan 1828 . . . . . . 7  |-  F/ v ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V )
99 nfv 1843 . . . . . . 7  |-  F/ v  p  =  P
10098, 99nfan 1828 . . . . . 6  |-  F/ v ( ( P  e.  X  /\  ran  (
v  e.  U  |->  ( v " { P } ) )  e. 
_V )  /\  p  =  P )
101 simpr2 1068 . . . . . . . . 9  |-  ( ( P  e.  X  /\  ( ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V  /\  p  =  P  /\  v  e.  U ) )  ->  p  =  P )
102101sneqd 4189 . . . . . . . 8  |-  ( ( P  e.  X  /\  ( ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V  /\  p  =  P  /\  v  e.  U ) )  ->  { p }  =  { P } )
103102imaeq2d 5466 . . . . . . 7  |-  ( ( P  e.  X  /\  ( ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V  /\  p  =  P  /\  v  e.  U ) )  -> 
( v " {
p } )  =  ( v " { P } ) )
1041033anassrs 1290 . . . . . 6  |-  ( ( ( ( P  e.  X  /\  ran  (
v  e.  U  |->  ( v " { P } ) )  e. 
_V )  /\  p  =  P )  /\  v  e.  U )  ->  (
v " { p } )  =  ( v " { P } ) )
105100, 104mpteq2da 4743 . . . . 5  |-  ( ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V )  /\  p  =  P )  ->  ( v  e.  U  |->  ( v " {
p } ) )  =  ( v  e.  U  |->  ( v " { P } ) ) )
106105rneqd 5353 . . . 4  |-  ( ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e.  _V )  /\  p  =  P )  ->  ran  ( v  e.  U  |->  ( v " { p } ) )  =  ran  (
v  e.  U  |->  ( v " { P } ) ) )
107 simpl 473 . . . 4  |-  ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )  ->  P  e.  X )
108 simpr 477 . . . 4  |-  ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )  ->  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )
10993, 106, 107, 108fvmptd 6288 . . 3  |-  ( ( P  e.  X  /\  ran  ( v  e.  U  |->  ( v " { P } ) )  e. 
_V )  ->  ( N `  P )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
11086, 92, 109syl2anc 693 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  ( N `  P )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
11174, 88, 1103eqtr2d 2662 1  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  (
( nei `  J
) `  { P } )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   ran crn 5115   "cima 5117   ` cfv 5888   neicnei 20901  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-top 20699  df-nei 20902  df-ust 22004  df-utop 22035
This theorem is referenced by:  utopsnneip  22052
  Copyright terms: Public domain W3C validator