| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcdir | Structured version Visualization version Unicode version | ||
| Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vciOLD.1 |
|
| vciOLD.2 |
|
| vciOLD.3 |
|
| Ref | Expression |
|---|---|
| vcdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 |
. . . . . 6
| |
| 2 | vciOLD.2 |
. . . . . 6
| |
| 3 | vciOLD.3 |
. . . . . 6
| |
| 4 | 1, 2, 3 | vciOLD 27416 |
. . . . 5
|
| 5 | simpl 473 |
. . . . . . . . . . 11
| |
| 6 | 5 | ralimi 2952 |
. . . . . . . . . 10
|
| 7 | 6 | adantl 482 |
. . . . . . . . 9
|
| 8 | 7 | ralimi 2952 |
. . . . . . . 8
|
| 9 | 8 | adantl 482 |
. . . . . . 7
|
| 10 | 9 | ralimi 2952 |
. . . . . 6
|
| 11 | 10 | 3ad2ant3 1084 |
. . . . 5
|
| 12 | 4, 11 | syl 17 |
. . . 4
|
| 13 | oveq2 6658 |
. . . . . 6
| |
| 14 | oveq2 6658 |
. . . . . . 7
| |
| 15 | oveq2 6658 |
. . . . . . 7
| |
| 16 | 14, 15 | oveq12d 6668 |
. . . . . 6
|
| 17 | 13, 16 | eqeq12d 2637 |
. . . . 5
|
| 18 | oveq1 6657 |
. . . . . . 7
| |
| 19 | 18 | oveq1d 6665 |
. . . . . 6
|
| 20 | oveq1 6657 |
. . . . . . 7
| |
| 21 | 20 | oveq1d 6665 |
. . . . . 6
|
| 22 | 19, 21 | eqeq12d 2637 |
. . . . 5
|
| 23 | oveq2 6658 |
. . . . . . 7
| |
| 24 | 23 | oveq1d 6665 |
. . . . . 6
|
| 25 | oveq1 6657 |
. . . . . . 7
| |
| 26 | 25 | oveq2d 6666 |
. . . . . 6
|
| 27 | 24, 26 | eqeq12d 2637 |
. . . . 5
|
| 28 | 17, 22, 27 | rspc3v 3325 |
. . . 4
|
| 29 | 12, 28 | syl5 34 |
. . 3
|
| 30 | 29 | 3coml 1272 |
. 2
|
| 31 | 30 | impcom 446 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-vc 27414 |
| This theorem is referenced by: vc2OLD 27423 vc0 27429 vcm 27431 nvdir 27486 |
| Copyright terms: Public domain | W3C validator |