MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem1 Structured version   Visualization version   Unicode version

Theorem vtxdginducedm1lem1 26435
Description: Lemma 1 for vtxdginducedm1 26439: the edge function in the induced subgraph  S of a pseudograph  G obtained by removing one vertex  N. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v  |-  V  =  (Vtx `  G )
vtxdginducedm1.e  |-  E  =  (iEdg `  G )
vtxdginducedm1.k  |-  K  =  ( V  \  { N } )
vtxdginducedm1.i  |-  I  =  { i  e.  dom  E  |  N  e/  ( E `  i ) }
vtxdginducedm1.p  |-  P  =  ( E  |`  I )
vtxdginducedm1.s  |-  S  = 
<. K ,  P >.
Assertion
Ref Expression
vtxdginducedm1lem1  |-  (iEdg `  S )  =  P

Proof of Theorem vtxdginducedm1lem1
StepHypRef Expression
1 vtxdginducedm1.s . . 3  |-  S  = 
<. K ,  P >.
21fveq2i 6194 . 2  |-  (iEdg `  S )  =  (iEdg `  <. K ,  P >. )
3 vtxdginducedm1.k . . . 4  |-  K  =  ( V  \  { N } )
4 vtxdginducedm1.v . . . . . 6  |-  V  =  (Vtx `  G )
54fvexi 6202 . . . . 5  |-  V  e. 
_V
65difexi 4809 . . . 4  |-  ( V 
\  { N }
)  e.  _V
73, 6eqeltri 2697 . . 3  |-  K  e. 
_V
8 vtxdginducedm1.p . . . 4  |-  P  =  ( E  |`  I )
9 vtxdginducedm1.e . . . . . 6  |-  E  =  (iEdg `  G )
109fvexi 6202 . . . . 5  |-  E  e. 
_V
1110resex 5443 . . . 4  |-  ( E  |`  I )  e.  _V
128, 11eqeltri 2697 . . 3  |-  P  e. 
_V
137, 12opiedgfvi 25890 . 2  |-  (iEdg `  <. K ,  P >. )  =  P
142, 13eqtri 2644 1  |-  (iEdg `  S )  =  P
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e/ wnel 2897   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-2nd 7169  df-iedg 25877
This theorem is referenced by:  vtxdginducedm1lem2  26436  vtxdginducedm1lem3  26437  vtxdginducedm1fi  26440  finsumvtxdg2ssteplem4  26444
  Copyright terms: Public domain W3C validator