Proof of Theorem finsumvtxdg2ssteplem4
Step | Hyp | Ref
| Expression |
1 | | finsumvtxdg2sstep.v |
. . . . . . . 8
Vtx   |
2 | | finsumvtxdg2sstep.e |
. . . . . . . 8
iEdg   |
3 | | finsumvtxdg2sstep.k |
. . . . . . . 8
     |
4 | | finsumvtxdg2sstep.i |
. . . . . . . 8
       |
5 | | finsumvtxdg2sstep.p |
. . . . . . . 8
   |
6 | | finsumvtxdg2sstep.s |
. . . . . . . 8
    |
7 | | finsumvtxdg2ssteplem.j |
. . . . . . . 8
       |
8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1fi 26440 |
. . . . . . 7
        VtxDeg       VtxDeg        
         |
9 | 8 | ad2antll 765 |
. . . . . 6
   UPGraph  
  
      VtxDeg       VtxDeg        
         |
10 | 9 | sumeq2d 14432 |
. . . . 5
   UPGraph  
         VtxDeg             VtxDeg        
         |
11 | | diffi 8192 |
. . . . . . . 8
       |
12 | 11 | adantr 481 |
. . . . . . 7
 
       |
13 | 12 | adantl 482 |
. . . . . 6
   UPGraph  
        |
14 | 5 | dmeqi 5325 |
. . . . . . . . 9
   |
15 | | finresfin 8186 |
. . . . . . . . . 10
     |
16 | | dmfi 8244 |
. . . . . . . . . 10
 

    |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
 
   |
18 | 14, 17 | syl5eqel 2705 |
. . . . . . . 8
   |
19 | 18 | ad2antll 765 |
. . . . . . 7
   UPGraph  
    |
20 | 3 | eqcomi 2631 |
. . . . . . . . 9
     |
21 | 20 | eleq2i 2693 |
. . . . . . . 8
    
  |
22 | 21 | biimpi 206 |
. . . . . . 7
       |
23 | 6 | fveq2i 6194 |
. . . . . . . . . 10
Vtx  Vtx      |
24 | 1 | fvexi 6202 |
. . . . . . . . . . . . 13
 |
25 | 24 | difexi 4809 |
. . . . . . . . . . . 12
     |
26 | 3, 25 | eqeltri 2697 |
. . . . . . . . . . 11
 |
27 | 2 | fvexi 6202 |
. . . . . . . . . . . . 13
 |
28 | 27 | resex 5443 |
. . . . . . . . . . . 12
   |
29 | 5, 28 | eqeltri 2697 |
. . . . . . . . . . 11
 |
30 | 26, 29 | opvtxfvi 25889 |
. . . . . . . . . 10
Vtx      |
31 | 23, 30 | eqtr2i 2645 |
. . . . . . . . 9
Vtx   |
32 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 26435 |
. . . . . . . . . 10
iEdg   |
33 | 32 | eqcomi 2631 |
. . . . . . . . 9
iEdg   |
34 | | eqid 2622 |
. . . . . . . . 9
 |
35 | 31, 33, 34 | vtxdgfisnn0 26371 |
. . . . . . . 8
    VtxDeg       |
36 | 35 | nn0cnd 11353 |
. . . . . . 7
    VtxDeg       |
37 | 19, 22, 36 | syl2an 494 |
. . . . . 6
    UPGraph

  
    
 VtxDeg       |
38 | | dmfi 8244 |
. . . . . . . . . . . 12
   |
39 | | rabfi 8185 |
. . . . . . . . . . . 12
 
    
  |
40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
 
       |
41 | 7, 40 | syl5eqel 2705 |
. . . . . . . . . 10
   |
42 | | rabfi 8185 |
. . . . . . . . . 10
         |
43 | | hashcl 13147 |
. . . . . . . . . 10
                   |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . 9
             |
45 | 44 | nn0cnd 11353 |
. . . . . . . 8
             |
46 | 45 | ad2antll 765 |
. . . . . . 7
   UPGraph  
              |
47 | 46 | adantr 481 |
. . . . . 6
    UPGraph

  
    
            |
48 | 13, 37, 47 | fsumadd 14470 |
. . . . 5
   UPGraph  
          VtxDeg        
               VtxDeg              
         |
49 | 10, 48 | eqtrd 2656 |
. . . 4
   UPGraph  
         VtxDeg      
      VtxDeg              
         |
50 | 3 | sumeq1i 14428 |
. . . . . 6

 VtxDeg            VtxDeg      |
51 | 50 | eqeq1i 2627 |
. . . . 5
 
 VtxDeg          
       VtxDeg             |
52 | | oveq1 6657 |
. . . . 5
 
      VtxDeg                   VtxDeg              
              
                  |
53 | 51, 52 | sylbi 207 |
. . . 4
 
 VtxDeg                   VtxDeg              
              
                  |
54 | 49, 53 | sylan9eq 2676 |
. . 3
    UPGraph

     VtxDeg                   VtxDeg                     
         |
55 | 54 | oveq1d 6665 |
. 2
    UPGraph

     VtxDeg                    VtxDeg                                         
                            |
56 | 45 | adantl 482 |
. . . . . . . . . 10
 
             |
57 | 56 | adantr 481 |
. . . . . . . . 9
   
                 |
58 | 12, 57 | fsumcl 14464 |
. . . . . . . 8
 
          
        |
59 | | hashcl 13147 |
. . . . . . . . . . 11
       |
60 | 41, 59 | syl 17 |
. . . . . . . . . 10
       |
61 | 60 | nn0cnd 11353 |
. . . . . . . . 9
       |
62 | 61 | adantl 482 |
. . . . . . . 8
 
       |
63 | | rabfi 8185 |
. . . . . . . . . . 11
           |
64 | | hashcl 13147 |
. . . . . . . . . . 11
                       |
65 | 38, 63, 64 | 3syl 18 |
. . . . . . . . . 10
    
          |
66 | 65 | nn0cnd 11353 |
. . . . . . . . 9
    
          |
67 | 66 | adantl 482 |
. . . . . . . 8
 
               |
68 | 58, 62, 67 | add12d 10262 |
. . . . . . 7
 
           
                                        
                      |
69 | 68 | adantl 482 |
. . . . . 6
   UPGraph  
            
                                        
                      |
70 | 1, 2, 3, 4, 5, 6, 7 | finsumvtxdg2ssteplem3 26443 |
. . . . . . 7
   UPGraph  
            
                         |
71 | 70 | oveq2d 6666 |
. . . . . 6
   UPGraph  
        
                                         |
72 | 61 | 2timesd 11275 |
. . . . . . . 8
                   |
73 | 72 | eqcomd 2628 |
. . . . . . 7
                   |
74 | 73 | ad2antll 765 |
. . . . . 6
   UPGraph  
                    |
75 | 69, 71, 74 | 3eqtrd 2660 |
. . . . 5
   UPGraph  
            
                                 |
76 | 75 | oveq2d 6666 |
. . . 4
   UPGraph  
                   
                                          |
77 | | 2cnd 11093 |
. . . . . . 7
   |
78 | 5, 15 | syl5eqel 2705 |
. . . . . . . . 9
   |
79 | | hashcl 13147 |
. . . . . . . . 9
       |
80 | 78, 79 | syl 17 |
. . . . . . . 8
       |
81 | 80 | nn0cnd 11353 |
. . . . . . 7
       |
82 | 77, 81 | mulcld 10060 |
. . . . . 6
         |
83 | 82 | ad2antll 765 |
. . . . 5
   UPGraph  
          |
84 | 58 | adantl 482 |
. . . . 5
   UPGraph  
                    |
85 | 61, 66 | addcld 10059 |
. . . . . 6
                     |
86 | 85 | ad2antll 765 |
. . . . 5
   UPGraph  
                      |
87 | 83, 84, 86 | addassd 10062 |
. . . 4
   UPGraph  
          
                                                    
                            |
88 | | 2cnd 11093 |
. . . . 5
   UPGraph  
    |
89 | 81 | ad2antll 765 |
. . . . 5
   UPGraph  
        |
90 | 61 | ad2antll 765 |
. . . . 5
   UPGraph  
        |
91 | 88, 89, 90 | adddid 10064 |
. . . 4
   UPGraph  
                              |
92 | 76, 87, 91 | 3eqtr4d 2666 |
. . 3
   UPGraph  
          
                                                 |
93 | 92 | adantr 481 |
. 2
    UPGraph

     VtxDeg                             
                                        |
94 | 55, 93 | eqtrd 2656 |
1
    UPGraph

     VtxDeg                    VtxDeg                                      |