Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Visualization version   Unicode version

Theorem ttac 37603
Description: Tarski's theorem about choice: infxpidm 9384 is equivalent to ax-ac 9281. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)

Proof of Theorem ttac
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfac10 8959 . 2  |-  (CHOICE  <->  dom  card  =  _V )
2 vex 3203 . . . . . 6  |-  c  e. 
_V
3 eleq2 2690 . . . . . 6  |-  ( dom 
card  =  _V  ->  ( c  e.  dom  card  <->  c  e.  _V ) )
42, 3mpbiri 248 . . . . 5  |-  ( dom 
card  =  _V  ->  c  e.  dom  card )
5 infxpidm2 8840 . . . . . 6  |-  ( ( c  e.  dom  card  /\ 
om  ~<_  c )  -> 
( c  X.  c
)  ~~  c )
65ex 450 . . . . 5  |-  ( c  e.  dom  card  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
74, 6syl 17 . . . 4  |-  ( dom 
card  =  _V  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
87alrimiv 1855 . . 3  |-  ( dom 
card  =  _V  ->  A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
9 finnum 8774 . . . . . . 7  |-  ( a  e.  Fin  ->  a  e.  dom  card )
109adantl 482 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  a  e.  Fin )  ->  a  e. 
dom  card )
11 harcl 8466 . . . . . . . . 9  |-  (har `  a )  e.  On
12 onenon 8775 . . . . . . . . 9  |-  ( (har
`  a )  e.  On  ->  (har `  a
)  e.  dom  card )
1311, 12ax-mp 5 . . . . . . . 8  |-  (har `  a )  e.  dom  card
14 fvex 6201 . . . . . . . . . . . . . 14  |-  (har `  a )  e.  _V
15 vex 3203 . . . . . . . . . . . . . 14  |-  a  e. 
_V
1614, 15unex 6956 . . . . . . . . . . . . 13  |-  ( (har
`  a )  u.  a )  e.  _V
17 harinf 37601 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  _V  /\  -.  a  e.  Fin )  ->  om  C_  (har `  a ) )
1815, 17mpan 706 . . . . . . . . . . . . . 14  |-  ( -.  a  e.  Fin  ->  om  C_  (har `  a )
)
19 ssun1 3776 . . . . . . . . . . . . . 14  |-  (har `  a )  C_  (
(har `  a )  u.  a )
2018, 19syl6ss 3615 . . . . . . . . . . . . 13  |-  ( -.  a  e.  Fin  ->  om  C_  ( (har `  a
)  u.  a ) )
21 ssdomg 8001 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( om  C_  (
(har `  a )  u.  a )  ->  om  ~<_  ( (har
`  a )  u.  a ) ) )
2216, 20, 21mpsyl 68 . . . . . . . . . . . 12  |-  ( -.  a  e.  Fin  ->  om  ~<_  ( (har `  a
)  u.  a ) )
23 breq2 4657 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( om  ~<_  c 
<->  om  ~<_  ( (har `  a )  u.  a
) ) )
24 xpeq12 5134 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  ( (har
`  a )  u.  a )  /\  c  =  ( (har `  a )  u.  a
) )  ->  (
c  X.  c )  =  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) ) )
2524anidms 677 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( c  X.  c )  =  ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) ) )
26 id 22 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  c  =  ( (har `  a )  u.  a ) )
2725, 26breq12d 4666 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( (
c  X.  c ) 
~~  c  <->  ( (
(har `  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
2823, 27imbi12d 334 . . . . . . . . . . . . 13  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( ( om 
~<_  c  ->  ( c  X.  c )  ~~  c )  <->  ( om  ~<_  ( (har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) ) )
2916, 28spcv 3299 . . . . . . . . . . . 12  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( om  ~<_  ( (har
`  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) )
3022, 29syl5 34 . . . . . . . . . . 11  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( -.  a  e. 
Fin  ->  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
3130imp 445 . . . . . . . . . 10  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) )
32 harndom 8469 . . . . . . . . . . . 12  |-  -.  (har `  a )  ~<_  a
33 ssdomg 8001 . . . . . . . . . . . . . 14  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( (har `  a
)  C_  ( (har `  a )  u.  a
)  ->  (har `  a
)  ~<_  ( (har `  a )  u.  a
) ) )
3416, 19, 33mp2 9 . . . . . . . . . . . . 13  |-  (har `  a )  ~<_  ( (har
`  a )  u.  a )
35 domtr 8009 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  ~<_  ( (har `  a )  u.  a )  /\  (
(har `  a )  u.  a )  ~<_  a )  ->  (har `  a
)  ~<_  a )
3634, 35mpan 706 . . . . . . . . . . . 12  |-  ( ( (har `  a )  u.  a )  ~<_  a  -> 
(har `  a )  ~<_  a )
3732, 36mto 188 . . . . . . . . . . 11  |-  -.  (
(har `  a )  u.  a )  ~<_  a
38 unxpwdom2 8493 . . . . . . . . . . 11  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a ) )
39 orel2 398 . . . . . . . . . . 11  |-  ( -.  ( (har `  a
)  u.  a )  ~<_  a  ->  ( (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
) )
4037, 38, 39mpsyl 68 . . . . . . . . . 10  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
4131, 40syl 17 . . . . . . . . 9  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
42 wdomnumr 8887 . . . . . . . . . 10  |-  ( (har
`  a )  e. 
dom  card  ->  ( (
(har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) ) )
4313, 42ax-mp 5 . . . . . . . . 9  |-  ( ( (har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) )
4441, 43sylib 208 . . . . . . . 8  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_  (har `  a ) )
45 numdom 8861 . . . . . . . 8  |-  ( ( (har `  a )  e.  dom  card  /\  (
(har `  a )  u.  a )  ~<_  (har `  a ) )  -> 
( (har `  a
)  u.  a )  e.  dom  card )
4613, 44, 45sylancr 695 . . . . . . 7  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  e.  dom  card )
47 ssun2 3777 . . . . . . 7  |-  a  C_  ( (har `  a )  u.  a )
48 ssnum 8862 . . . . . . 7  |-  ( ( ( (har `  a
)  u.  a )  e.  dom  card  /\  a  C_  ( (har `  a
)  u.  a ) )  ->  a  e.  dom  card )
4946, 47, 48sylancl 694 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  a  e.  dom  card )
5010, 49pm2.61dan 832 . . . . 5  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  a  e.  dom  card )
5150alrimiv 1855 . . . 4  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  A. a  a  e. 
dom  card )
52 eqv 3205 . . . 4  |-  ( dom 
card  =  _V  <->  A. a 
a  e.  dom  card )
5351, 52sylibr 224 . . 3  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  dom  card  =  _V )
548, 53impbii 199 . 2  |-  ( dom 
card  =  _V  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
551, 54bitri 264 1  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Oncon0 5723   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955  harchar 8461    ~<_* cwdom 8462   cardccrd 8761  CHOICEwac 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-wdom 8464  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator