MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wloglei Structured version   Visualization version   Unicode version

Theorem wloglei 10560
Description: Form of wlogle 10561 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
wlogle.1  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
wlogle.2  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
wlogle.3  |-  ( ph  ->  S  C_  RR )
wloglei.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  th )
wloglei.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
Assertion
Ref Expression
wloglei  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Distinct variable groups:    x, w, y, z, ph    w, S, x, y, z    ps, x, y    ch, w, z
Allowed substitution hints:    ps( z, w)    ch( x, y)    th( x, y, z, w)

Proof of Theorem wloglei
StepHypRef Expression
1 wlogle.3 . . . 4  |-  ( ph  ->  S  C_  RR )
21adantr 481 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  C_  RR )
3 simprr 796 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
42, 3sseldd 3604 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  RR )
5 simprl 794 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
62, 5sseldd 3604 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  RR )
7 vex 3203 . . 3  |-  x  e. 
_V
8 vex 3203 . . 3  |-  y  e. 
_V
9 eleq1 2689 . . . . . . 7  |-  ( z  =  x  ->  (
z  e.  S  <->  x  e.  S ) )
10 eleq1 2689 . . . . . . 7  |-  ( w  =  y  ->  (
w  e.  S  <->  y  e.  S ) )
119, 10bi2anan9 917 . . . . . 6  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( z  e.  S  /\  w  e.  S )  <->  ( x  e.  S  /\  y  e.  S ) ) )
1211anbi2d 740 . . . . 5  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ph  /\  ( z  e.  S  /\  w  e.  S
) )  <->  ( ph  /\  ( x  e.  S  /\  y  e.  S
) ) ) )
13 breq12 4658 . . . . . 6  |-  ( ( w  =  y  /\  z  =  x )  ->  ( w  <_  z  <->  y  <_  x ) )
1413ancoms 469 . . . . 5  |-  ( ( z  =  x  /\  w  =  y )  ->  ( w  <_  z  <->  y  <_  x ) )
1512, 14anbi12d 747 . . . 4  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( ph  /\  ( z  e.  S  /\  w  e.  S
) )  /\  w  <_  z )  <->  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  y  <_  x ) ) )
16 wlogle.1 . . . 4  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
1715, 16imbi12d 334 . . 3  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z )  ->  ps )  <->  ( ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  y  <_  x )  ->  ch ) ) )
18 vex 3203 . . . 4  |-  z  e. 
_V
19 vex 3203 . . . 4  |-  w  e. 
_V
20 ancom 466 . . . . . . . 8  |-  ( ( x  e.  S  /\  y  e.  S )  <->  ( y  e.  S  /\  x  e.  S )
)
21 eleq1 2689 . . . . . . . . 9  |-  ( y  =  z  ->  (
y  e.  S  <->  z  e.  S ) )
22 eleq1 2689 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  e.  S  <->  w  e.  S ) )
2321, 22bi2anan9 917 . . . . . . . 8  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( y  e.  S  /\  x  e.  S )  <->  ( z  e.  S  /\  w  e.  S ) ) )
2420, 23syl5bb 272 . . . . . . 7  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( x  e.  S  /\  y  e.  S )  <->  ( z  e.  S  /\  w  e.  S ) ) )
2524anbi2d 740 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ph  /\  ( x  e.  S  /\  y  e.  S
) )  <->  ( ph  /\  ( z  e.  S  /\  w  e.  S
) ) ) )
26 breq12 4658 . . . . . . 7  |-  ( ( x  =  w  /\  y  =  z )  ->  ( x  <_  y  <->  w  <_  z ) )
2726ancoms 469 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( x  <_  y  <->  w  <_  z ) )
2825, 27anbi12d 747 . . . . 5  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ( ph  /\  ( x  e.  S  /\  y  e.  S
) )  /\  x  <_  y )  <->  ( ( ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z ) ) )
29 equcom 1945 . . . . . . 7  |-  ( y  =  z  <->  z  =  y )
30 equcom 1945 . . . . . . 7  |-  ( x  =  w  <->  w  =  x )
31 wlogle.2 . . . . . . 7  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
3229, 30, 31syl2anb 496 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ps  <->  th )
)
3332bicomd 213 . . . . 5  |-  ( ( y  =  z  /\  x  =  w )  ->  ( th  <->  ps )
)
3428, 33imbi12d 334 . . . 4  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  x  <_  y )  ->  th )  <->  ( ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z )  ->  ps ) ) )
35 df-3an 1039 . . . . . 6  |-  ( ( x  e.  S  /\  y  e.  S  /\  x  <_  y )  <->  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )
36 wloglei.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  th )
3735, 36sylan2br 493 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )  ->  th )
3837anassrs 680 . . . 4  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  x  <_  y )  ->  th )
3918, 19, 34, 38vtocl2 3261 . . 3  |-  ( ( ( ph  /\  (
z  e.  S  /\  w  e.  S )
)  /\  w  <_  z )  ->  ps )
407, 8, 17, 39vtocl2 3261 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  y  <_  x )  ->  ch )
41 wloglei.5 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
4235, 41sylan2br 493 . . 3  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )  ->  ch )
4342anassrs 680 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  x  <_  y )  ->  ch )
444, 6, 40, 43lecasei 10143 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   class class class wbr 4653   RRcr 9935    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  wlogle  10561  resconn  31228
  Copyright terms: Public domain W3C validator