| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wloglei | Structured version Visualization version Unicode version | ||
| Description: Form of wlogle 10561 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| wlogle.1 |
|
| wlogle.2 |
|
| wlogle.3 |
|
| wloglei.4 |
|
| wloglei.5 |
|
| Ref | Expression |
|---|---|
| wloglei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlogle.3 |
. . . 4
| |
| 2 | 1 | adantr 481 |
. . 3
|
| 3 | simprr 796 |
. . 3
| |
| 4 | 2, 3 | sseldd 3604 |
. 2
|
| 5 | simprl 794 |
. . 3
| |
| 6 | 2, 5 | sseldd 3604 |
. 2
|
| 7 | vex 3203 |
. . 3
| |
| 8 | vex 3203 |
. . 3
| |
| 9 | eleq1 2689 |
. . . . . . 7
| |
| 10 | eleq1 2689 |
. . . . . . 7
| |
| 11 | 9, 10 | bi2anan9 917 |
. . . . . 6
|
| 12 | 11 | anbi2d 740 |
. . . . 5
|
| 13 | breq12 4658 |
. . . . . 6
| |
| 14 | 13 | ancoms 469 |
. . . . 5
|
| 15 | 12, 14 | anbi12d 747 |
. . . 4
|
| 16 | wlogle.1 |
. . . 4
| |
| 17 | 15, 16 | imbi12d 334 |
. . 3
|
| 18 | vex 3203 |
. . . 4
| |
| 19 | vex 3203 |
. . . 4
| |
| 20 | ancom 466 |
. . . . . . . 8
| |
| 21 | eleq1 2689 |
. . . . . . . . 9
| |
| 22 | eleq1 2689 |
. . . . . . . . 9
| |
| 23 | 21, 22 | bi2anan9 917 |
. . . . . . . 8
|
| 24 | 20, 23 | syl5bb 272 |
. . . . . . 7
|
| 25 | 24 | anbi2d 740 |
. . . . . 6
|
| 26 | breq12 4658 |
. . . . . . 7
| |
| 27 | 26 | ancoms 469 |
. . . . . 6
|
| 28 | 25, 27 | anbi12d 747 |
. . . . 5
|
| 29 | equcom 1945 |
. . . . . . 7
| |
| 30 | equcom 1945 |
. . . . . . 7
| |
| 31 | wlogle.2 |
. . . . . . 7
| |
| 32 | 29, 30, 31 | syl2anb 496 |
. . . . . 6
|
| 33 | 32 | bicomd 213 |
. . . . 5
|
| 34 | 28, 33 | imbi12d 334 |
. . . 4
|
| 35 | df-3an 1039 |
. . . . . 6
| |
| 36 | wloglei.4 |
. . . . . 6
| |
| 37 | 35, 36 | sylan2br 493 |
. . . . 5
|
| 38 | 37 | anassrs 680 |
. . . 4
|
| 39 | 18, 19, 34, 38 | vtocl2 3261 |
. . 3
|
| 40 | 7, 8, 17, 39 | vtocl2 3261 |
. 2
|
| 41 | wloglei.5 |
. . . 4
| |
| 42 | 35, 41 | sylan2br 493 |
. . 3
|
| 43 | 42 | anassrs 680 |
. 2
|
| 44 | 4, 6, 40, 43 | lecasei 10143 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-pre-lttri 10010 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 |
| This theorem is referenced by: wlogle 10561 resconn 31228 |
| Copyright terms: Public domain | W3C validator |