MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlogle Structured version   Visualization version   Unicode version

Theorem wlogle 10561
Description: If the predicate  ch (
x ,  y ) is symmetric under interchange of  x ,  y, then "without loss of generality" we can assume that  x  <_  y. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.)
Hypotheses
Ref Expression
wlogle.1  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
wlogle.2  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
wlogle.3  |-  ( ph  ->  S  C_  RR )
wlogle.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ch  <->  th )
)
wlogle.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
Assertion
Ref Expression
wlogle  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Distinct variable groups:    x, w, y, z, ph    w, S, x, y, z    ps, x, y    ch, w, z
Allowed substitution hints:    ps( z, w)    ch( x, y)    th( x, y, z, w)

Proof of Theorem wlogle
StepHypRef Expression
1 wlogle.1 . 2  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
2 wlogle.2 . 2  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
3 wlogle.3 . 2  |-  ( ph  ->  S  C_  RR )
4 wlogle.5 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
5 wlogle.4 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ch  <->  th )
)
653adantr3 1222 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  -> 
( ch  <->  th )
)
74, 6mpbid 222 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  th )
81, 2, 3, 7, 4wloglei 10560 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   class class class wbr 4653   RRcr 9935    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  vdwlem12  15696  iundisj2  23317  volcn  23374  dvlip  23756  ftc1a  23800  iundisj2f  29403  iundisj2fi  29556  erdszelem9  31181  ftc1anc  33493
  Copyright terms: Public domain W3C validator