MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   Unicode version

Theorem wspthsnonn0vne 26813
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne  |-  ( ( N  e.  NN  /\  ( X ( N WSPathsNOn  G ) Y )  =/=  (/) )  ->  X  =/=  Y )

Proof of Theorem wspthsnonn0vne
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . 3  |-  ( ( X ( N WSPathsNOn  G ) Y )  =/=  (/)  <->  E. p  p  e.  ( X
( N WSPathsNOn  G ) Y ) )
2 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
32wspthnonp 26744 . . . . 5  |-  ( p  e.  ( X ( N WSPathsNOn  G ) Y )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( X  e.  (Vtx `  G
)  /\  Y  e.  (Vtx `  G ) )  /\  ( p  e.  ( X ( N WWalksNOn  G ) Y )  /\  E. f  f ( X (SPathsOn `  G
) Y ) p ) ) )
42wwlknon 26742 . . . . . . . . 9  |-  ( ( X  e.  (Vtx `  G )  /\  Y  e.  (Vtx `  G )
)  ->  ( p  e.  ( X ( N WWalksNOn  G ) Y )  <-> 
( p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  N )  =  Y ) ) )
54adantl 482 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( p  e.  ( X ( N WWalksNOn  G ) Y )  <->  ( p  e.  ( N WWalksN  G )  /\  ( p `  0
)  =  X  /\  ( p `  N
)  =  Y ) ) )
6 iswwlksn 26730 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( p  e.  ( N WWalksN  G
)  <->  ( p  e.  (WWalks `  G )  /\  ( # `  p
)  =  ( N  +  1 ) ) ) )
7 spthonisspth 26646 . . . . . . . . . . . . . . . . . . 19  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  f (SPaths `  G ) p )
8 spthispth 26622 . . . . . . . . . . . . . . . . . . 19  |-  ( f (SPaths `  G )
p  ->  f (Paths `  G ) p )
9 pthiswlk 26623 . . . . . . . . . . . . . . . . . . . 20  |-  ( f (Paths `  G )
p  ->  f (Walks `  G ) p )
10 wlklenvm1 26517 . . . . . . . . . . . . . . . . . . . 20  |-  ( f (Walks `  G )
p  ->  ( # `  f
)  =  ( (
# `  p )  -  1 ) )
119, 10syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( f (Paths `  G )
p  ->  ( # `  f
)  =  ( (
# `  p )  -  1 ) )
127, 8, 113syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  ( # `  f
)  =  ( (
# `  p )  -  1 ) )
13 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  =  ( N  + 
1 )  ->  (
( # `  p )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
1413eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  p )  =  ( N  + 
1 )  ->  (
( # `  f )  =  ( ( # `  p )  -  1 )  <->  ( # `  f
)  =  ( ( N  +  1 )  -  1 ) ) )
15 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  -> 
( # `  f )  =  ( ( N  +  1 )  - 
1 ) )
16 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  N  e.  CC )
17 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
1918adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  -> 
( ( N  + 
1 )  -  1 )  =  N )
2015, 19eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  -> 
( # `  f )  =  N )
21 nnne0 11053 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  N  =/=  0 )
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  ->  N  =/=  0 )
2320, 22eqnetrd 2861 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  -> 
( # `  f )  =/=  0 )
24 spthonepeq 26648 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  ( X  =  Y  <->  ( # `  f
)  =  0 ) )
2524necon3bid 2838 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  ( X  =/= 
Y  <->  ( # `  f
)  =/=  0 ) )
2623, 25syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  ( # `  f )  =  ( ( N  +  1 )  - 
1 ) )  -> 
( f ( X (SPathsOn `  G ) Y ) p  ->  X  =/=  Y ) )
2726expcom 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  f )  =  ( ( N  +  1 )  - 
1 )  ->  ( N  e.  NN  ->  ( f ( X (SPathsOn `  G ) Y ) p  ->  X  =/=  Y ) ) )
2827com23 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  f )  =  ( ( N  +  1 )  - 
1 )  ->  (
f ( X (SPathsOn `  G ) Y ) p  ->  ( N  e.  NN  ->  X  =/=  Y ) ) )
2914, 28syl6bi 243 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  p )  =  ( N  + 
1 )  ->  (
( # `  f )  =  ( ( # `  p )  -  1 )  ->  ( f
( X (SPathsOn `  G
) Y ) p  ->  ( N  e.  NN  ->  X  =/=  Y ) ) ) )
3029com13 88 . . . . . . . . . . . . . . . . . 18  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  ( ( # `  f )  =  ( ( # `  p
)  -  1 )  ->  ( ( # `  p )  =  ( N  +  1 )  ->  ( N  e.  NN  ->  X  =/=  Y ) ) ) )
3112, 30mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( f ( X (SPathsOn `  G
) Y ) p  ->  ( ( # `  p )  =  ( N  +  1 )  ->  ( N  e.  NN  ->  X  =/=  Y ) ) )
3231exlimiv 1858 . . . . . . . . . . . . . . . 16  |-  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( ( # `  p
)  =  ( N  +  1 )  -> 
( N  e.  NN  ->  X  =/=  Y ) ) )
3332com12 32 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  ( N  + 
1 )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) )
3433adantl 482 . . . . . . . . . . . . . 14  |-  ( ( p  e.  (WWalks `  G )  /\  ( # `
 p )  =  ( N  +  1 ) )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) )
356, 34syl6bi 243 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( p  e.  ( N WWalksN  G
)  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) ) )
3635adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  G  e.  _V )  ->  ( p  e.  ( N WWalksN  G )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) ) )
3736adantr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( p  e.  ( N WWalksN  G )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) ) )
3837com12 32 . . . . . . . . . 10  |-  ( p  e.  ( N WWalksN  G
)  ->  ( (
( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( E. f  f ( X (SPathsOn `  G
) Y ) p  ->  ( N  e.  NN  ->  X  =/=  Y ) ) ) )
39383ad2ant1 1082 . . . . . . . . 9  |-  ( ( p  e.  ( N WWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  N )  =  Y )  ->  (
( ( N  e. 
NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx `  G
)  /\  Y  e.  (Vtx `  G ) ) )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) ) )
4039com12 32 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( ( p  e.  ( N WWalksN  G )  /\  ( p `  0
)  =  X  /\  ( p `  N
)  =  Y )  ->  ( E. f 
f ( X (SPathsOn `  G ) Y ) p  ->  ( N  e.  NN  ->  X  =/=  Y ) ) ) )
415, 40sylbid 230 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( p  e.  ( X ( N WWalksNOn  G ) Y )  ->  ( E. f  f ( X (SPathsOn `  G ) Y ) p  -> 
( N  e.  NN  ->  X  =/=  Y ) ) ) )
4241impd 447 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) ) )  -> 
( ( p  e.  ( X ( N WWalksNOn  G ) Y )  /\  E. f  f ( X (SPathsOn `  G
) Y ) p )  ->  ( N  e.  NN  ->  X  =/=  Y ) ) )
43423impia 1261 . . . . 5  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( X  e.  (Vtx
`  G )  /\  Y  e.  (Vtx `  G
) )  /\  (
p  e.  ( X ( N WWalksNOn  G ) Y )  /\  E. f  f ( X (SPathsOn `  G ) Y ) p ) )  ->  ( N  e.  NN  ->  X  =/=  Y ) )
443, 43syl 17 . . . 4  |-  ( p  e.  ( X ( N WSPathsNOn  G ) Y )  ->  ( N  e.  NN  ->  X  =/=  Y ) )
4544exlimiv 1858 . . 3  |-  ( E. p  p  e.  ( X ( N WSPathsNOn  G ) Y )  ->  ( N  e.  NN  ->  X  =/=  Y ) )
461, 45sylbi 207 . 2  |-  ( ( X ( N WSPathsNOn  G ) Y )  =/=  (/)  ->  ( N  e.  NN  ->  X  =/=  Y ) )
4746impcom 446 1  |-  ( ( N  e.  NN  /\  ( X ( N WSPathsNOn  G ) Y )  =/=  (/) )  ->  X  =/=  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  Pathscpths 26608  SPathscspths 26609  SPathsOncspthson 26611  WWalkscwwlks 26717   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  wspniunwspnon  26819  usgr2wspthons3  26857
  Copyright terms: Public domain W3C validator