MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddval Structured version   Visualization version   Unicode version

Theorem xaddval 12054
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )

Proof of Theorem xaddval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
21eqeq1d 2624 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = +oo  <->  A  = +oo ) )
3 simpr 477 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
43eqeq1d 2624 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = -oo  <->  B  = -oo ) )
54ifbid 4108 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo ,  0 , +oo )  =  if ( B  = -oo ,  0 , +oo ) )
61eqeq1d 2624 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = -oo  <->  A  = -oo ) )
73eqeq1d 2624 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = +oo  <->  B  = +oo ) )
87ifbid 4108 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo ,  0 , -oo )  =  if ( B  = +oo ,  0 , -oo ) )
9 oveq12 6659 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  +  y )  =  ( A  +  B ) )
104, 9ifbieq2d 4111 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo , -oo , 
( x  +  y ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
117, 10ifbieq2d 4111 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
126, 8, 11ifbieq12d 4113 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
132, 5, 12ifbieq12d 4113 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  =  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
14 df-xadd 11947 . 2  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
15 c0ex 10034 . . . 4  |-  0  e.  _V
16 pnfex 10093 . . . 4  |- +oo  e.  _V
1715, 16ifex 4156 . . 3  |-  if ( B  = -oo , 
0 , +oo )  e.  _V
18 mnfxr 10096 . . . . . 6  |- -oo  e.  RR*
1918elexi 3213 . . . . 5  |- -oo  e.  _V
2015, 19ifex 4156 . . . 4  |-  if ( B  = +oo , 
0 , -oo )  e.  _V
21 ovex 6678 . . . . . 6  |-  ( A  +  B )  e. 
_V
2219, 21ifex 4156 . . . . 5  |-  if ( B  = -oo , -oo ,  ( A  +  B ) )  e. 
_V
2316, 22ifex 4156 . . . 4  |-  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  e.  _V
2420, 23ifex 4156 . . 3  |-  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  e.  _V
2517, 24ifex 4156 . 2  |-  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  e.  _V
2613, 14, 25ovmpt2a 6791 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086  (class class class)co 6650   0cc0 9936    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xadd 11947
This theorem is referenced by:  xaddpnf1  12057  xaddpnf2  12058  xaddmnf1  12059  xaddmnf2  12060  pnfaddmnf  12061  mnfaddpnf  12062  rexadd  12063
  Copyright terms: Public domain W3C validator