MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfaddmnf Structured version   Visualization version   Unicode version

Theorem pnfaddmnf 12061
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf  |-  ( +oo +e -oo )  =  0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 10092 . . 3  |- +oo  e.  RR*
2 mnfxr 10096 . . 3  |- -oo  e.  RR*
3 xaddval 12054 . . 3  |-  ( ( +oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) ) )
41, 2, 3mp2an 708 . 2  |-  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) )
5 eqid 2622 . . 3  |- +oo  = +oo
65iftruei 4093 . 2  |-  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo ) ) ) ) )  =  if ( -oo  = -oo , 
0 , +oo )
7 eqid 2622 . . 3  |- -oo  = -oo
87iftruei 4093 . 2  |-  if ( -oo  = -oo , 
0 , +oo )  =  0
94, 6, 83eqtri 2648 1  |-  ( +oo +e -oo )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   ifcif 4086  (class class class)co 6650   0cc0 9936    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xadd 11947
This theorem is referenced by:  xnegid  12069  xaddcom  12071  xnegdi  12078  xsubge0  12091  xlesubadd  12093  xadddilem  12124  xblss2  22207
  Copyright terms: Public domain W3C validator