| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddf | Structured version Visualization version Unicode version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 10086 |
. . . . . 6
| |
| 2 | pnfxr 10092 |
. . . . . 6
| |
| 3 | 1, 2 | keepel 4155 |
. . . . 5
|
| 4 | 3 | a1i 11 |
. . . 4
|
| 5 | mnfxr 10096 |
. . . . . . 7
| |
| 6 | 1, 5 | keepel 4155 |
. . . . . 6
|
| 7 | 6 | a1i 11 |
. . . . 5
|
| 8 | 2 | a1i 11 |
. . . . . . . 8
|
| 9 | 5 | a1i 11 |
. . . . . . . . 9
|
| 10 | ioran 511 |
. . . . . . . . . . . . . 14
| |
| 11 | elxr 11950 |
. . . . . . . . . . . . . . . . . 18
| |
| 12 | 3orass 1040 |
. . . . . . . . . . . . . . . . . 18
| |
| 13 | 11, 12 | sylbb 209 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 13 | ord 392 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | con1d 139 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | imp 445 |
. . . . . . . . . . . . . 14
|
| 17 | 10, 16 | sylan2br 493 |
. . . . . . . . . . . . 13
|
| 18 | ioran 511 |
. . . . . . . . . . . . . 14
| |
| 19 | elxr 11950 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 3orass 1040 |
. . . . . . . . . . . . . . . . . 18
| |
| 21 | 19, 20 | sylbb 209 |
. . . . . . . . . . . . . . . . 17
|
| 22 | 21 | ord 392 |
. . . . . . . . . . . . . . . 16
|
| 23 | 22 | con1d 139 |
. . . . . . . . . . . . . . 15
|
| 24 | 23 | imp 445 |
. . . . . . . . . . . . . 14
|
| 25 | 18, 24 | sylan2br 493 |
. . . . . . . . . . . . 13
|
| 26 | readdcl 10019 |
. . . . . . . . . . . . 13
| |
| 27 | 17, 25, 26 | syl2an 494 |
. . . . . . . . . . . 12
|
| 28 | 27 | rexrd 10089 |
. . . . . . . . . . 11
|
| 29 | 28 | anassrs 680 |
. . . . . . . . . 10
|
| 30 | 29 | anassrs 680 |
. . . . . . . . 9
|
| 31 | 9, 30 | ifclda 4120 |
. . . . . . . 8
|
| 32 | 8, 31 | ifclda 4120 |
. . . . . . 7
|
| 33 | 32 | an32s 846 |
. . . . . 6
|
| 34 | 33 | anassrs 680 |
. . . . 5
|
| 35 | 7, 34 | ifclda 4120 |
. . . 4
|
| 36 | 4, 35 | ifclda 4120 |
. . 3
|
| 37 | 36 | rgen2a 2977 |
. 2
|
| 38 | df-xadd 11947 |
. . 3
| |
| 39 | 38 | fmpt2 7237 |
. 2
|
| 40 | 37, 39 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-pnf 10076 df-mnf 10077 df-xr 10078 df-xadd 11947 |
| This theorem is referenced by: xaddcl 12070 xrsadd 19763 xrofsup 29533 xrge0pluscn 29986 xrge0tmdOLD 29991 |
| Copyright terms: Public domain | W3C validator |