MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr Structured version   Visualization version   Unicode version

Theorem xpexr 7106
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr  |-  ( ( A  X.  B )  e.  C  ->  ( A  e.  _V  \/  B  e.  _V )
)

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 4790 . . . . . 6  |-  (/)  e.  _V
2 eleq1 2689 . . . . . 6  |-  ( A  =  (/)  ->  ( A  e.  _V  <->  (/)  e.  _V ) )
31, 2mpbiri 248 . . . . 5  |-  ( A  =  (/)  ->  A  e. 
_V )
43pm2.24d 147 . . . 4  |-  ( A  =  (/)  ->  ( -.  A  e.  _V  ->  B  e.  _V ) )
54a1d 25 . . 3  |-  ( A  =  (/)  ->  ( ( A  X.  B )  e.  C  ->  ( -.  A  e.  _V  ->  B  e.  _V )
) )
6 rnexg 7098 . . . . 5  |-  ( ( A  X.  B )  e.  C  ->  ran  ( A  X.  B
)  e.  _V )
7 rnxp 5564 . . . . . 6  |-  ( A  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
87eleq1d 2686 . . . . 5  |-  ( A  =/=  (/)  ->  ( ran  ( A  X.  B
)  e.  _V  <->  B  e.  _V ) )
96, 8syl5ib 234 . . . 4  |-  ( A  =/=  (/)  ->  ( ( A  X.  B )  e.  C  ->  B  e.  _V ) )
109a1dd 50 . . 3  |-  ( A  =/=  (/)  ->  ( ( A  X.  B )  e.  C  ->  ( -.  A  e.  _V  ->  B  e.  _V ) ) )
115, 10pm2.61ine 2877 . 2  |-  ( ( A  X.  B )  e.  C  ->  ( -.  A  e.  _V  ->  B  e.  _V )
)
1211orrd 393 1  |-  ( ( A  X.  B )  e.  C  ->  ( A  e.  _V  \/  B  e.  _V )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915    X. cxp 5112   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator