MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen2g Structured version   Visualization version   Unicode version

Theorem xpsnen2g 8053
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snex 4908 . . . 4  |-  { A }  e.  _V
2 xpcomeng 8052 . . . 4  |-  ( ( { A }  e.  _V  /\  B  e.  W
)  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
31, 2mpan 706 . . 3  |-  ( B  e.  W  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
43adantl 482 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  ( B  X.  { A }
) )
5 xpsneng 8045 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  { A } )  ~~  B
)
65ancoms 469 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { A } )  ~~  B
)
7 entr 8008 . 2  |-  ( ( ( { A }  X.  B )  ~~  ( B  X.  { A }
)  /\  ( B  X.  { A } ) 
~~  B )  -> 
( { A }  X.  B )  ~~  B
)
84, 6, 7syl2anc 693 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200   {csn 4177   class class class wbr 4653    X. cxp 5112    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956
This theorem is referenced by:  unxpwdom2  8493  ackbij1lem8  9049  lgsquadlem1  25105  lgsquadlem2  25106
  Copyright terms: Public domain W3C validator