| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlttri | Structured version Visualization version Unicode version | ||
| Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 10010 or axlttri 10109. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrlttri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr 11953 |
. . . . . . . 8
| |
| 2 | 1 | adantr 481 |
. . . . . . 7
|
| 3 | breq2 4657 |
. . . . . . . 8
| |
| 4 | 3 | adantl 482 |
. . . . . . 7
|
| 5 | 2, 4 | mtbid 314 |
. . . . . 6
|
| 6 | 5 | ex 450 |
. . . . 5
|
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | xrltnsym 11970 |
. . . . 5
| |
| 9 | 8 | ancoms 469 |
. . . 4
|
| 10 | 7, 9 | jaod 395 |
. . 3
|
| 11 | elxr 11950 |
. . . 4
| |
| 12 | elxr 11950 |
. . . 4
| |
| 13 | axlttri 10109 |
. . . . . . . 8
| |
| 14 | 13 | biimprd 238 |
. . . . . . 7
|
| 15 | 14 | con1d 139 |
. . . . . 6
|
| 16 | ltpnf 11954 |
. . . . . . . . 9
| |
| 17 | 16 | adantr 481 |
. . . . . . . 8
|
| 18 | breq2 4657 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 482 |
. . . . . . . 8
|
| 20 | 17, 19 | mpbird 247 |
. . . . . . 7
|
| 21 | 20 | pm2.24d 147 |
. . . . . 6
|
| 22 | mnflt 11957 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
|
| 24 | breq1 4656 |
. . . . . . . . . 10
| |
| 25 | 24 | adantl 482 |
. . . . . . . . 9
|
| 26 | 23, 25 | mpbird 247 |
. . . . . . . 8
|
| 27 | 26 | olcd 408 |
. . . . . . 7
|
| 28 | 27 | a1d 25 |
. . . . . 6
|
| 29 | 15, 21, 28 | 3jaodan 1394 |
. . . . 5
|
| 30 | ltpnf 11954 |
. . . . . . . . . 10
| |
| 31 | 30 | adantl 482 |
. . . . . . . . 9
|
| 32 | breq2 4657 |
. . . . . . . . . 10
| |
| 33 | 32 | adantr 481 |
. . . . . . . . 9
|
| 34 | 31, 33 | mpbird 247 |
. . . . . . . 8
|
| 35 | 34 | olcd 408 |
. . . . . . 7
|
| 36 | 35 | a1d 25 |
. . . . . 6
|
| 37 | eqtr3 2643 |
. . . . . . . 8
| |
| 38 | 37 | orcd 407 |
. . . . . . 7
|
| 39 | 38 | a1d 25 |
. . . . . 6
|
| 40 | mnfltpnf 11960 |
. . . . . . . . . 10
| |
| 41 | breq12 4658 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | mpbiri 248 |
. . . . . . . . 9
|
| 43 | 42 | ancoms 469 |
. . . . . . . 8
|
| 44 | 43 | olcd 408 |
. . . . . . 7
|
| 45 | 44 | a1d 25 |
. . . . . 6
|
| 46 | 36, 39, 45 | 3jaodan 1394 |
. . . . 5
|
| 47 | mnflt 11957 |
. . . . . . . . 9
| |
| 48 | 47 | adantl 482 |
. . . . . . . 8
|
| 49 | breq1 4656 |
. . . . . . . . 9
| |
| 50 | 49 | adantr 481 |
. . . . . . . 8
|
| 51 | 48, 50 | mpbird 247 |
. . . . . . 7
|
| 52 | 51 | pm2.24d 147 |
. . . . . 6
|
| 53 | breq12 4658 |
. . . . . . . 8
| |
| 54 | 40, 53 | mpbiri 248 |
. . . . . . 7
|
| 55 | 54 | pm2.24d 147 |
. . . . . 6
|
| 56 | eqtr3 2643 |
. . . . . . . 8
| |
| 57 | 56 | orcd 407 |
. . . . . . 7
|
| 58 | 57 | a1d 25 |
. . . . . 6
|
| 59 | 52, 55, 58 | 3jaodan 1394 |
. . . . 5
|
| 60 | 29, 46, 59 | 3jaoian 1393 |
. . . 4
|
| 61 | 11, 12, 60 | syl2anb 496 |
. . 3
|
| 62 | 10, 61 | impbid 202 |
. 2
|
| 63 | 62 | con2bid 344 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 |
| This theorem is referenced by: xrltso 11974 xrleloe 11977 xrltlen 11979 |
| Copyright terms: Public domain | W3C validator |