MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnsym Structured version   Visualization version   Unicode version

Theorem xrltnsym 11970
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 11950 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 11950 . 2  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 ltnsym 10135 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
4 rexr 10085 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
5 pnfnlt 11962 . . . . . . . 8  |-  ( A  e.  RR*  ->  -. +oo  <  A )
64, 5syl 17 . . . . . . 7  |-  ( A  e.  RR  ->  -. +oo 
<  A )
76adantr 481 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  -. +oo  <  A
)
8 breq1 4656 . . . . . . 7  |-  ( B  = +oo  ->  ( B  <  A  <-> +oo  <  A
) )
98adantl 482 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B  <  A  <-> +oo 
<  A ) )
107, 9mtbird 315 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  -.  B  <  A
)
1110a1d 25 . . . 4  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  ->  -.  B  <  A
) )
12 nltmnf 11963 . . . . . . . 8  |-  ( A  e.  RR*  ->  -.  A  < -oo )
134, 12syl 17 . . . . . . 7  |-  ( A  e.  RR  ->  -.  A  < -oo )
1413adantr 481 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
15 breq2 4657 . . . . . . 7  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
1615adantl 482 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
1714, 16mtbird 315 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  <  B
)
1817pm2.21d 118 . . . 4  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  -.  B  <  A
) )
193, 11, 183jaodan 1394 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -.  B  <  A ) )
20 pnfnlt 11962 . . . . . . 7  |-  ( B  e.  RR*  ->  -. +oo  <  B )
2120adantl 482 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
22 breq1 4656 . . . . . . 7  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
2322adantr 481 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
2421, 23mtbird 315 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -.  A  <  B )
2524pm2.21d 118 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  -.  B  <  A
) )
262, 25sylan2br 493 . . 3  |-  ( ( A  = +oo  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -.  B  <  A ) )
27 rexr 10085 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
28 nltmnf 11963 . . . . . . . 8  |-  ( B  e.  RR*  ->  -.  B  < -oo )
2927, 28syl 17 . . . . . . 7  |-  ( B  e.  RR  ->  -.  B  < -oo )
3029adantl 482 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  -.  B  < -oo )
31 breq2 4657 . . . . . . 7  |-  ( A  = -oo  ->  ( B  <  A  <->  B  < -oo ) )
3231adantr 481 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  <  A  <->  B  < -oo ) )
3330, 32mtbird 315 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  -.  B  <  A
)
3433a1d 25 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
35 mnfxr 10096 . . . . . . . 8  |- -oo  e.  RR*
36 pnfnlt 11962 . . . . . . . 8  |-  ( -oo  e.  RR*  ->  -. +oo  < -oo )
3735, 36ax-mp 5 . . . . . . 7  |-  -. +oo  < -oo
38 breq12 4658 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = -oo )  ->  ( B  <  A  <-> +oo 
< -oo ) )
3937, 38mtbiri 317 . . . . . 6  |-  ( ( B  = +oo  /\  A  = -oo )  ->  -.  B  <  A
)
4039ancoms 469 . . . . 5  |-  ( ( A  = -oo  /\  B  = +oo )  ->  -.  B  <  A
)
4140a1d 25 . . . 4  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  ->  -.  B  <  A
) )
42 xrltnr 11953 . . . . . . 7  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
4335, 42ax-mp 5 . . . . . 6  |-  -. -oo  < -oo
44 breq12 4658 . . . . . 6  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
4543, 44mtbiri 317 . . . . 5  |-  ( ( A  = -oo  /\  B  = -oo )  ->  -.  A  <  B
)
4645pm2.21d 118 . . . 4  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  ->  -.  B  <  A
) )
4734, 41, 463jaodan 1394 . . 3  |-  ( ( A  = -oo  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -.  B  <  A ) )
4819, 26, 473jaoian 1393 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( A  <  B  ->  -.  B  <  A
) )
491, 2, 48syl2anb 496 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   class class class wbr 4653   RRcr 9935   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  xrltnsym2  11971  xrlttri  11972  xmullem2  12095  sgnp  13830  iccpartnel  41374
  Copyright terms: Public domain W3C validator