MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fornex Structured version   Visualization version   Unicode version

Theorem fornex 7135
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
fornex  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)

Proof of Theorem fornex
StepHypRef Expression
1 fofun 6116 . . . 4  |-  ( F : A -onto-> B  ->  Fun  F )
2 funrnex 7133 . . . 4  |-  ( dom 
F  e.  C  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
31, 2syl5com 31 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C  ->  ran  F  e.  _V ) )
4 fof 6115 . . . . 5  |-  ( F : A -onto-> B  ->  F : A --> B )
5 fdm 6051 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
64, 5syl 17 . . . 4  |-  ( F : A -onto-> B  ->  dom  F  =  A )
76eleq1d 2686 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C 
<->  A  e.  C ) )
8 forn 6118 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
98eleq1d 2686 . . 3  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
103, 7, 93imtr3d 282 . 2  |-  ( F : A -onto-> B  -> 
( A  e.  C  ->  B  e.  _V )
)
1110com12 32 1  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   -onto->wfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  f1dmex  7136  f1ovv  7137  f1oeng  7974  fodomnum  8880  ttukeylem1  9331  fodomb  9348  cnexALT  11828  imasbas  16172  imasds  16173  elqtop  21500  qtoprest  21520  indishmph  21601  imasf1oxmet  22180  foresf1o  29343  noprc  31895  sge0f1o  40599  sge0fodjrnlem  40633
  Copyright terms: Public domain W3C validator