Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imambfm Structured version   Visualization version   GIF version

Theorem imambfm 30324
Description: If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
imambfm.1 (𝜑𝐾 ∈ V)
imambfm.2 (𝜑𝑆 ran sigAlgebra)
imambfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
imambfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Distinct variable groups:   𝐹,𝑎   𝐾,𝑎   𝑆,𝑎   𝑇,𝑎   𝜑,𝑎

Proof of Theorem imambfm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imambfm.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
21adantr 481 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑆 ran sigAlgebra)
3 imambfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
4 imambfm.1 . . . . . . 7 (𝜑𝐾 ∈ V)
54sgsiga 30205 . . . . . 6 (𝜑 → (sigaGen‘𝐾) ∈ ran sigAlgebra)
63, 5eqeltrd 2701 . . . . 5 (𝜑𝑇 ran sigAlgebra)
76adantr 481 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑇 ran sigAlgebra)
8 simpr 477 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹 ∈ (𝑆MblFnM𝑇))
92, 7, 8mbfmf 30317 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹: 𝑆 𝑇)
101ad2antrr 762 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑆 ran sigAlgebra)
116ad2antrr 762 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑇 ran sigAlgebra)
12 simplr 792 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐹 ∈ (𝑆MblFnM𝑇))
13 sssigagen 30208 . . . . . . . . 9 (𝐾 ∈ V → 𝐾 ⊆ (sigaGen‘𝐾))
144, 13syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ (sigaGen‘𝐾))
1514, 3sseqtr4d 3642 . . . . . . 7 (𝜑𝐾𝑇)
1615ad2antrr 762 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐾𝑇)
17 simpr 477 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝐾)
1816, 17sseldd 3604 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝑇)
1910, 11, 12, 18mbfmcnvima 30319 . . . 4 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2019ralrimiva 2966 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
219, 20jca 554 . 2 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
22 unielsiga 30191 . . . . . 6 (𝑇 ran sigAlgebra → 𝑇𝑇)
236, 22syl 17 . . . . 5 (𝜑 𝑇𝑇)
2423adantr 481 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇𝑇)
25 unielsiga 30191 . . . . . 6 (𝑆 ran sigAlgebra → 𝑆𝑆)
261, 25syl 17 . . . . 5 (𝜑 𝑆𝑆)
2726adantr 481 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆𝑆)
28 simprl 794 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹: 𝑆 𝑇)
29 elmapg 7870 . . . . 5 (( 𝑇𝑇 𝑆𝑆) → (𝐹 ∈ ( 𝑇𝑚 𝑆) ↔ 𝐹: 𝑆 𝑇))
3029biimpar 502 . . . 4 ((( 𝑇𝑇 𝑆𝑆) ∧ 𝐹: 𝑆 𝑇) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
3124, 27, 28, 30syl21anc 1325 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
323adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = (sigaGen‘𝐾))
33 simpl 473 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝜑)
34 ssrab2 3687 . . . . . . . . . . 11 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇
35 pwuni 4474 . . . . . . . . . . 11 𝑇 ⊆ 𝒫 𝑇
3634, 35sstri 3612 . . . . . . . . . 10 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
3736a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
38 fimacnv 6347 . . . . . . . . . . . . 13 (𝐹: 𝑆 𝑇 → (𝐹 𝑇) = 𝑆)
3938ad2antrl 764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) = 𝑆)
4039, 27eqeltrd 2701 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) ∈ 𝑆)
41 imaeq2 5462 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹 𝑇))
4241eleq1d 2686 . . . . . . . . . . . 12 (𝑎 = 𝑇 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑇) ∈ 𝑆))
4342elrab 3363 . . . . . . . . . . 11 ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑇𝑇 ∧ (𝐹 𝑇) ∈ 𝑆))
4424, 40, 43sylanbrc 698 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
456ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇 ran sigAlgebra)
4645, 22syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇𝑇)
47 elrabi 3359 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥𝑇)
4847adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑥𝑇)
49 difelsiga 30196 . . . . . . . . . . . . 13 ((𝑇 ran sigAlgebra ∧ 𝑇𝑇𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
5045, 46, 48, 49syl3anc 1326 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ 𝑇)
51 simplrl 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝐹: 𝑆 𝑇)
52 ffun 6048 . . . . . . . . . . . . . 14 (𝐹: 𝑆 𝑇 → Fun 𝐹)
53 difpreima 6343 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5451, 52, 533syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5539difeq1d 3727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
5655adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
571ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆 ran sigAlgebra)
5857, 25syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆𝑆)
59 imaeq2 5462 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
6059eleq1d 2686 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
6160elrab 3363 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑥𝑇 ∧ (𝐹𝑥) ∈ 𝑆))
6261simprbi 480 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑥) ∈ 𝑆)
6362adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹𝑥) ∈ 𝑆)
64 difelsiga 30196 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ 𝑆𝑆 ∧ (𝐹𝑥) ∈ 𝑆) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6557, 58, 63, 64syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6656, 65eqeltrd 2701 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) ∈ 𝑆)
6754, 66eqeltrd 2701 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆)
68 imaeq2 5462 . . . . . . . . . . . . . 14 (𝑎 = ( 𝑇𝑥) → (𝐹𝑎) = (𝐹 “ ( 𝑇𝑥)))
6968eleq1d 2686 . . . . . . . . . . . . 13 (𝑎 = ( 𝑇𝑥) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7069elrab 3363 . . . . . . . . . . . 12 (( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (( 𝑇𝑥) ∈ 𝑇 ∧ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7150, 67, 70sylanbrc 698 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
7271ralrimiva 2966 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
736ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑇 ran sigAlgebra)
74 sspwb 4917 . . . . . . . . . . . . . . . . 17 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇 ↔ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
7534, 74mpbi 220 . . . . . . . . . . . . . . . 16 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
7675sseli 3599 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥 ∈ 𝒫 𝑇)
7776ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑇)
78 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
79 sigaclcu 30180 . . . . . . . . . . . . . 14 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
8073, 77, 78, 79syl3anc 1326 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥𝑇)
81 simpllr 799 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
8281simpld 475 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝐹: 𝑆 𝑇)
83 unipreima 29446 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
8482, 52, 833syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
851ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
86 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦𝑥)
87 simpllr 799 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
88 elelpwi 4171 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑥𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
8986, 87, 88syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
90 imaeq2 5462 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9190eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑦) ∈ 𝑆))
9291elrab 3363 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑦𝑇 ∧ (𝐹𝑦) ∈ 𝑆))
9392simprbi 480 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑦) ∈ 𝑆)
9489, 93syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ 𝑆)
9594ralrimiva 2966 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
96 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑦𝑥
9796sigaclcuni 30181 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9885, 95, 78, 97syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9984, 98eqeltrd 2701 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) ∈ 𝑆)
100 imaeq2 5462 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹 𝑥))
101100eleq1d 2686 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑥) ∈ 𝑆))
102101elrab 3363 . . . . . . . . . . . . 13 ( 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑥𝑇 ∧ (𝐹 𝑥) ∈ 𝑆))
10380, 99, 102sylanbrc 698 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
104103ex 450 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
105104ralrimiva 2966 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
10644, 72, 1053jca 1242 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))
107 rabexg 4812 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V)
108 issiga 30174 . . . . . . . . . . 11 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
1096, 107, 1083syl 18 . . . . . . . . . 10 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
110109biimpar 502 . . . . . . . . 9 ((𝜑 ∧ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
11133, 37, 106, 110syl12anc 1324 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
1123unieqd 4446 . . . . . . . . . . . 12 (𝜑 𝑇 = (sigaGen‘𝐾))
113 unisg 30206 . . . . . . . . . . . . 13 (𝐾 ∈ V → (sigaGen‘𝐾) = 𝐾)
1144, 113syl 17 . . . . . . . . . . . 12 (𝜑 (sigaGen‘𝐾) = 𝐾)
115112, 114eqtrd 2656 . . . . . . . . . . 11 (𝜑 𝑇 = 𝐾)
116115fveq2d 6195 . . . . . . . . . 10 (𝜑 → (sigAlgebra‘ 𝑇) = (sigAlgebra‘ 𝐾))
117116eleq2d 2687 . . . . . . . . 9 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
118117adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
119111, 118mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾))
12015adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾𝑇)
121 simprr 796 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
122 ssrab 3680 . . . . . . . 8 (𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝐾𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
123120, 121, 122sylanbrc 698 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
124 sigagenss 30212 . . . . . . 7 (({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾) ∧ 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
125119, 123, 124syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12632, 125eqsstrd 3639 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12734a1i 11 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇)
128126, 127eqssd 3620 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
129 rabid2 3118 . . . 4 (𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
130128, 129sylib 208 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
1311adantr 481 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆 ran sigAlgebra)
1326adantr 481 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ran sigAlgebra)
133131, 132ismbfm 30314 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)))
13431, 130, 133mpbir2and 957 . 2 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ (𝑆MblFnM𝑇))
13521, 134impbida 877 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158   cuni 4436   ciun 4520   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  𝑚 cmap 7857  cdom 7953  sigAlgebracsiga 30170  sigaGencsigagen 30201  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-siga 30171  df-sigagen 30202  df-mbfm 30313
This theorem is referenced by:  cnmbfm  30325  mbfmco2  30327
  Copyright terms: Public domain W3C validator