MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn2 Structured version   Visualization version   GIF version

Theorem acsfn2 16324
Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑉   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn2
StepHypRef Expression
1 elpwi 4168 . . . . 5 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3668 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎)))
3 ralss 3668 . . . . . . . 8 (𝑎𝑋 → (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ ∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎))))
4 r19.21v 2960 . . . . . . . 8 (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎))
5 impexp 462 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ (𝑐𝑎 → (𝑏𝑎𝐸𝑎)))
6 vex 3203 . . . . . . . . . . . 12 𝑐 ∈ V
7 vex 3203 . . . . . . . . . . . 12 𝑏 ∈ V
86, 7prss 4351 . . . . . . . . . . 11 ((𝑐𝑎𝑏𝑎) ↔ {𝑐, 𝑏} ⊆ 𝑎)
98imbi1i 339 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
105, 9bitr3i 266 . . . . . . . . 9 ((𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
1110ralbii 2980 . . . . . . . 8 (∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
123, 4, 113bitr3g 302 . . . . . . 7 (𝑎𝑋 → ((𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1312ralbidv 2986 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
142, 13bitrd 268 . . . . 5 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
151, 14syl 17 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1615rabbiia 3185 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
17 riinrab 4596 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
1816, 17eqtr4i 2647 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)})
19 mreacs 16319 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2019adantr 481 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
21 riinrab 4596 . . . . . . 7 (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
2219ad2antrr 762 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
23 simpll 790 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝑋𝑉)
24 simprr 796 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝐸𝑋)
25 prssi 4353 . . . . . . . . . . . . . 14 ((𝑐𝑋𝑏𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2625ancoms 469 . . . . . . . . . . . . 13 ((𝑏𝑋𝑐𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2726ad2ant2lr 784 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ⊆ 𝑋)
28 prfi 8235 . . . . . . . . . . . . 13 {𝑐, 𝑏} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ∈ Fin)
30 acsfn 16320 . . . . . . . . . . . 12 (((𝑋𝑉𝐸𝑋) ∧ ({𝑐, 𝑏} ⊆ 𝑋 ∧ {𝑐, 𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3123, 24, 27, 29, 30syl22anc 1327 . . . . . . . . . . 11 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3231expr 643 . . . . . . . . . 10 (((𝑋𝑉𝑏𝑋) ∧ 𝑐𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3332ralimdva 2962 . . . . . . . . 9 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3433imp 445 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
35 mreriincl 16258 . . . . . . . 8 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3622, 34, 35syl2anc 693 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3721, 36syl5eqelr 2706 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3837ex 450 . . . . 5 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3938ralimdva 2962 . . . 4 (𝑋𝑉 → (∀𝑏𝑋𝑐𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
4039imp 445 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
41 mreriincl 16258 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4220, 40, 41syl2anc 693 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4318, 42syl5eqel 2705 1 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912  {crab 2916  cin 3573  wss 3574  𝒫 cpw 4158  {cpr 4179   ciin 4521  cfv 5888  Fincfn 7955  Moorecmre 16242  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-mre 16246  df-mrc 16247  df-acs 16249
This theorem is referenced by:  submacs  17365  submgmacs  41804
  Copyright terms: Public domain W3C validator