Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2f Structured version   Visualization version   GIF version

Theorem acunirnmpt2f 29461
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
acunirnmpt2f.c 𝑗𝐶
acunirnmpt2f.d 𝑗𝐷
acunirnmpt2f.2 𝐶 = 𝑗𝐴 𝐵
acunirnmpt2f.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
acunirnmpt2f.4 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
acunirnmpt2f (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝐶,𝑓,𝑥   𝑓,𝑗,𝜑,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑥,𝑗)   𝐶(𝑗)   𝐷(𝑥,𝑓,𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2f
Dummy variables 𝑐 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3203 . . . . . . 7 𝑦 ∈ V
3 eqid 2622 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5372 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 208 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1843 . . . . . . . . 9 𝑗𝜑
8 acunirnmpt2f.c . . . . . . . . . 10 𝑗𝐶
98nfcri 2758 . . . . . . . . 9 𝑗 𝑥𝐶
107, 9nfan 1828 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
11 nfcv 2764 . . . . . . . . 9 𝑗𝑦
12 nfmpt1 4747 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
1312nfrn 5368 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
1411, 13nfel 2777 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
1510, 14nfan 1828 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
16 nfv 1843 . . . . . . 7 𝑗 𝑥𝑦
1715, 16nfan 1828 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
18 simpllr 799 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
19 simpr 477 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2018, 19eleqtrd 2703 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
2120ex 450 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
2221ex 450 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2317, 22reximdai 3012 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
246, 23mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
25 acunirnmpt2f.2 . . . . . . . 8 𝐶 = 𝑗𝐴 𝐵
26 acunirnmpt2f.4 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐵𝑊)
2726ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
28 dfiun3g 5378 . . . . . . . . 9 (∀𝑗𝐴 𝐵𝑊 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
2927, 28syl 17 . . . . . . . 8 (𝜑 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
3025, 29syl5eq 2668 . . . . . . 7 (𝜑𝐶 = ran (𝑗𝐴𝐵))
3130eleq2d 2687 . . . . . 6 (𝜑 → (𝑥𝐶𝑥 ran (𝑗𝐴𝐵)))
3231biimpa 501 . . . . 5 ((𝜑𝑥𝐶) → 𝑥 ran (𝑗𝐴𝐵))
33 eluni2 4440 . . . . 5 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3432, 33sylib 208 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3524, 34r19.29a 3078 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
3635ralrimiva 2966 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
37 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
38 aciunf1lem.a . . . . . . 7 𝑗𝐴
39 nfcv 2764 . . . . . . 7 𝑘𝐴
40 nfcv 2764 . . . . . . 7 𝑘𝐵
41 nfcsb1v 3549 . . . . . . 7 𝑗𝑘 / 𝑗𝐵
42 csbeq1a 3542 . . . . . . 7 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
4338, 39, 40, 41, 42cbvmptf 4748 . . . . . 6 (𝑗𝐴𝐵) = (𝑘𝐴𝑘 / 𝑗𝐵)
44 mptexg 6484 . . . . . 6 (𝐴𝑉 → (𝑘𝐴𝑘 / 𝑗𝐵) ∈ V)
4543, 44syl5eqel 2705 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
46 rnexg 7098 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
47 uniexg 6955 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
4837, 45, 46, 474syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
4930, 48eqeltrd 2701 . . 3 (𝜑𝐶 ∈ V)
50 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
5150raleqdv 3144 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
5250feq2d 6031 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
5350raleqdv 3144 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
5452, 53anbi12d 747 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5554exbidv 1850 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5651, 55imbi12d 334 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
57 acunirnmpt2f.d . . . . . 6 𝑗𝐷
5857nfcri 2758 . . . . 5 𝑗 𝑥𝐷
59 vex 3203 . . . . 5 𝑐 ∈ V
60 acunirnmpt2f.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
6160eleq2d 2687 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
6238, 58, 59, 61ac6sf2 29429 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
6356, 62vtoclg 3266 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6449, 63syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6536, 64mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  c0 3915   cuni 4436   ciun 4520  cmpt 4729  ran crn 5115  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-en 7956  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939
This theorem is referenced by:  aciunf1lem  29462
  Copyright terms: Public domain W3C validator