![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardalephex | Structured version Visualization version GIF version |
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
Ref | Expression |
---|---|
cardalephex | ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ω ⊆ 𝐴) | |
2 | cardaleph 8912 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
3 | 2 | sseq2d 3633 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
4 | alephgeom 8905 | . . . . . 6 ⊢ (∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ↔ ω ⊆ (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
5 | 3, 4 | syl6bbr 278 | . . . . 5 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (ω ⊆ 𝐴 ↔ ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On)) |
6 | 1, 5 | mpbid 222 | . . . 4 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On) |
7 | fveq2 6191 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) | |
8 | 7 | eqeq2d 2632 | . . . . 5 ⊢ (𝑥 = ∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} → (𝐴 = (ℵ‘𝑥) ↔ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)}))) |
9 | 8 | rspcev 3309 | . . . 4 ⊢ ((∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)} ∈ On ∧ 𝐴 = (ℵ‘∩ {𝑦 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑦)})) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
10 | 6, 2, 9 | syl2anc 693 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
11 | 10 | ex 450 | . 2 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
12 | alephcard 8893 | . . . 4 ⊢ (card‘(ℵ‘𝑥)) = (ℵ‘𝑥) | |
13 | fveq2 6191 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = (card‘(ℵ‘𝑥))) | |
14 | id 22 | . . . 4 ⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 = (ℵ‘𝑥)) | |
15 | 12, 13, 14 | 3eqtr4a 2682 | . . 3 ⊢ (𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
16 | 15 | rexlimivw 3029 | . 2 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → (card‘𝐴) = 𝐴) |
17 | 11, 16 | impbid1 215 | 1 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ⊆ wss 3574 ∩ cint 4475 Oncon0 5723 ‘cfv 5888 ωcom 7065 cardccrd 8761 ℵcale 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-card 8765 df-aleph 8766 |
This theorem is referenced by: infenaleph 8914 isinfcard 8915 alephfp 8931 alephval3 8933 dfac12k 8969 alephval2 9394 winalim2 9518 |
Copyright terms: Public domain | W3C validator |