![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alexsub | Structured version Visualization version GIF version |
Description: The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 21855 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
alexsub.1 | ⊢ (𝜑 → 𝑋 ∈ UFL) |
alexsub.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐵) |
alexsub.3 | ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) |
alexsub.4 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
Ref | Expression |
---|---|
alexsub | ⊢ (𝜑 → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexsub.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ UFL) | |
2 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 ∈ UFL) |
3 | alexsub.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 = ∪ 𝐵) | |
4 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 = ∪ 𝐵) |
5 | alexsub.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) | |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝐽 = (topGen‘(fi‘𝐵))) |
7 | alexsub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) | |
8 | 7 | adantlr 751 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
9 | simprl 794 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑓 ∈ (UFil‘𝑋)) | |
10 | simprr 796 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → (𝐽 fLim 𝑓) = ∅) | |
11 | 2, 4, 6, 8, 9, 10 | alexsublem 21848 | . . . . . . 7 ⊢ ¬ (𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) |
12 | 11 | pm2.21i 116 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → ¬ (𝐽 fLim 𝑓) = ∅) |
13 | 12 | expr 643 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fLim 𝑓) = ∅ → ¬ (𝐽 fLim 𝑓) = ∅)) |
14 | 13 | pm2.01d 181 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ¬ (𝐽 fLim 𝑓) = ∅) |
15 | 14 | neqned 2801 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐽 fLim 𝑓) ≠ ∅) |
16 | 15 | ralrimiva 2966 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
17 | fibas 20781 | . . . . . 6 ⊢ (fi‘𝐵) ∈ TopBases | |
18 | tgtopon 20775 | . . . . . 6 ⊢ ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵)) |
20 | 5, 19 | syl6eqel 2709 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ (fi‘𝐵))) |
21 | elex 3212 | . . . . . . . . . 10 ⊢ (𝑋 ∈ UFL → 𝑋 ∈ V) | |
22 | 1, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | 3, 22 | eqeltrrd 2702 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
24 | uniexb 6973 | . . . . . . . 8 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
25 | 23, 24 | sylibr 224 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
26 | fiuni 8334 | . . . . . . 7 ⊢ (𝐵 ∈ V → ∪ 𝐵 = ∪ (fi‘𝐵)) | |
27 | 25, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∪ 𝐵 = ∪ (fi‘𝐵)) |
28 | 3, 27 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ (fi‘𝐵)) |
29 | 28 | fveq2d 6195 | . . . 4 ⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ (fi‘𝐵))) |
30 | 20, 29 | eleqtrrd 2704 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
31 | ufilcmp 21836 | . . 3 ⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) | |
32 | 1, 30, 31 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |
33 | 16, 32 | mpbird 247 | 1 ⊢ (𝜑 → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ficfi 8316 topGenctg 16098 TopOnctopon 20715 TopBasesctb 20749 Compccmp 21189 UFilcufil 21703 UFLcufl 21704 fLim cflim 21738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-topgen 16104 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-cmp 21190 df-fil 21650 df-ufil 21705 df-ufl 21706 df-flim 21743 df-fcls 21745 |
This theorem is referenced by: alexsubb 21850 ptcmplem5 21860 |
Copyright terms: Public domain | W3C validator |