MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Structured version   Visualization version   GIF version

Theorem ptcmplem5 21860
Description: Lemma for ptcmp 21862. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem5 (𝜑 → (∏t𝐹) ∈ Comp)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . 3 (UFL ∩ dom card) ⊆ UFL
2 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
31, 2sseldi 3601 . 2 (𝜑𝑋 ∈ UFL)
4 ptcmp.1 . . . 4 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
5 ptcmp.2 . . . 4 𝑋 = X𝑛𝐴 (𝐹𝑛)
6 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
7 ptcmp.4 . . . 4 (𝜑𝐹:𝐴⟶Comp)
84, 5, 6, 7, 2ptcmplem1 21856 . . 3 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
98simpld 475 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
108simprd 479 . 2 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
11 elpwi 4168 . . . . . 6 (𝑦 ∈ 𝒫 ran 𝑆𝑦 ⊆ ran 𝑆)
126ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐴𝑉)
137ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐹:𝐴⟶Comp)
142ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 ∈ (UFL ∩ dom card))
15 simplrl 800 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑦 ⊆ ran 𝑆)
16 simplrr 801 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 = 𝑦)
17 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
18 imaeq2 5462 . . . . . . . . . . 11 (𝑧 = 𝑢 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1918eleq1d 2686 . . . . . . . . . 10 (𝑧 = 𝑢 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦))
2019cbvrabv 3199 . . . . . . . . 9 {𝑧 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦} = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦}
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 21859 . . . . . . . 8 ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
22 iman 440 . . . . . . . 8 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2321, 22mpbir 221 . . . . . . 7 ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
2423expr 643 . . . . . 6 ((𝜑𝑦 ⊆ ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2511, 24sylan2 491 . . . . 5 ((𝜑𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2625adantlr 751 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
27 selpw 4165 . . . . . . 7 (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ↔ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋}))
28 eldif 3584 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) ↔ (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆))
29 elpwunsn 4224 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) → 𝑋𝑦)
3028, 29sylbir 225 . . . . . . 7 ((𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3127, 30sylanbr 490 . . . . . 6 ((𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3231adantll 750 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
33 snssi 4339 . . . . . . . . 9 (𝑋𝑦 → {𝑋} ⊆ 𝑦)
3433adantl 482 . . . . . . . 8 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ⊆ 𝑦)
35 snfi 8038 . . . . . . . . 9 {𝑋} ∈ Fin
3635a1i 11 . . . . . . . 8 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ∈ Fin)
37 elfpw 8268 . . . . . . . 8 ({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({𝑋} ⊆ 𝑦 ∧ {𝑋} ∈ Fin))
3834, 36, 37sylanbrc 698 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ∈ (𝒫 𝑦 ∩ Fin))
39 unisng 4452 . . . . . . . . 9 (𝑋𝑦 {𝑋} = 𝑋)
4039eqcomd 2628 . . . . . . . 8 (𝑋𝑦𝑋 = {𝑋})
4140adantl 482 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → 𝑋 = {𝑋})
42 unieq 4444 . . . . . . . . 9 (𝑧 = {𝑋} → 𝑧 = {𝑋})
4342eqeq2d 2632 . . . . . . . 8 (𝑧 = {𝑋} → (𝑋 = 𝑧𝑋 = {𝑋}))
4443rspcev 3309 . . . . . . 7 (({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑋 = {𝑋}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4538, 41, 44syl2anc 693 . . . . . 6 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4645a1d 25 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4732, 46syldan 487 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4826, 47pm2.61dan 832 . . 3 ((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4948impr 649 . 2 ((𝜑 ∧ (𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ 𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
503, 9, 10, 49alexsub 21849 1 (𝜑 → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  cdif 3571  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  wf 5884  cfv 5888  cmpt2 6652  Xcixp 7908  Fincfn 7955  ficfi 8316  cardccrd 8761  topGenctg 16098  tcpt 16099  Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-wdom 8464  df-card 8765  df-acn 8768  df-topgen 16104  df-pt 16105  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by:  ptcmpg  21861
  Copyright terms: Public domain W3C validator