![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfi1uzind | Structured version Visualization version GIF version |
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 13281) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
brfi1uzind.r | ⊢ Rel 𝐺 |
brfi1uzind.f | ⊢ 𝐹 ∈ V |
brfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
brfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
brfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
brfi1uzind.3 | ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
brfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
brfi1uzind.base | ⊢ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝐿) → 𝜓) |
brfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
brfi1uzind | ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfi1uzind.r | . . . 4 ⊢ Rel 𝐺 | |
2 | brrelex12 5155 | . . . 4 ⊢ ((Rel 𝐺 ∧ 𝑉𝐺𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
3 | 1, 2 | mpan 706 | . . 3 ⊢ (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
4 | simpl 473 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V) | |
5 | simplr 792 | . . . . . 6 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V) | |
6 | breq12 4658 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) | |
7 | 6 | adantll 750 | . . . . . 6 ⊢ ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
8 | 5, 7 | sbcied 3472 | . . . . 5 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
9 | 4, 8 | sbcied 3472 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
10 | 9 | biimprcd 240 | . . 3 ⊢ (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)) |
11 | 3, 10 | mpd 15 | . 2 ⊢ (𝑉𝐺𝐸 → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏) |
12 | brfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
13 | brfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
14 | brfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
15 | brfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
16 | vex 3203 | . . . . 5 ⊢ 𝑣 ∈ V | |
17 | vex 3203 | . . . . 5 ⊢ 𝑒 ∈ V | |
18 | breq12 4658 | . . . . 5 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (𝑎𝐺𝑏 ↔ 𝑣𝐺𝑒)) | |
19 | 16, 17, 18 | sbc2ie 3505 | . . . 4 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ↔ 𝑣𝐺𝑒) |
20 | brfi1uzind.3 | . . . . 5 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) | |
21 | difexg 4808 | . . . . . . 7 ⊢ (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V) | |
22 | 16, 21 | ax-mp 5 | . . . . . 6 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
23 | 12 | elexi 3213 | . . . . . 6 ⊢ 𝐹 ∈ V |
24 | breq12 4658 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)) | |
25 | 22, 23, 24 | sbc2ie 3505 | . . . . 5 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹) |
26 | 20, 25 | sylibr 224 | . . . 4 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏) |
27 | 19, 26 | sylanb 489 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏) |
28 | brfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
29 | brfi1uzind.base | . . . 4 ⊢ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝐿) → 𝜓) | |
30 | 19, 29 | sylanb 489 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = 𝐿) → 𝜓) |
31 | 19 | 3anbi1i 1253 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
32 | 31 | anbi2i 730 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
33 | brfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
34 | 32, 33 | sylanb 489 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
35 | 12, 13, 14, 15, 27, 28, 30, 34 | fi1uzind 13279 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑) |
36 | 11, 35 | syl3an1 1359 | 1 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 ∖ cdif 3571 {csn 4177 class class class wbr 4653 Rel wrel 5119 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 1c1 9937 + caddc 9939 ≤ cle 10075 ℕ0cn0 11292 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: brfi1ind 13281 |
Copyright terms: Public domain | W3C validator |