MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2 Structured version   Visualization version   GIF version

Theorem canth2 8113
Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 6608. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.)
Hypothesis
Ref Expression
canth2.1 𝐴 ∈ V
Assertion
Ref Expression
canth2 𝐴 ≺ 𝒫 𝐴

Proof of Theorem canth2
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth2.1 . . 3 𝐴 ∈ V
21pwex 4848 . . 3 𝒫 𝐴 ∈ V
3 snelpwi 4912 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 vex 3203 . . . . . . 7 𝑥 ∈ V
54sneqr 4371 . . . . . 6 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
6 sneq 4187 . . . . . 6 (𝑥 = 𝑦 → {𝑥} = {𝑦})
75, 6impbii 199 . . . . 5 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
87a1i 11 . . . 4 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
93, 8dom3 7999 . . 3 ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴)
101, 2, 9mp2an 708 . 2 𝐴 ≼ 𝒫 𝐴
111canth 6608 . . . . 5 ¬ 𝑓:𝐴onto→𝒫 𝐴
12 f1ofo 6144 . . . . 5 (𝑓:𝐴1-1-onto→𝒫 𝐴𝑓:𝐴onto→𝒫 𝐴)
1311, 12mto 188 . . . 4 ¬ 𝑓:𝐴1-1-onto→𝒫 𝐴
1413nex 1731 . . 3 ¬ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴
15 bren 7964 . . 3 (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴1-1-onto→𝒫 𝐴)
1614, 15mtbir 313 . 2 ¬ 𝐴 ≈ 𝒫 𝐴
17 brsdom 7978 . 2 (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴))
1810, 16, 17mpbir2an 955 1 𝐴 ≺ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  ontowfo 5886  1-1-ontowf1o 5887  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  canth2g  8114  r1sdom  8637  alephsucpw2  8934  dfac13  8964  pwsdompw  9026  numthcor  9316  alephexp1  9401  pwcfsdom  9405  cfpwsdom  9406  gchhar  9501  gchac  9503  inawinalem  9511  tskcard  9603  gruina  9640  grothac  9652  rpnnen  14956  rexpen  14957  rucALT  14959  rectbntr0  22635
  Copyright terms: Public domain W3C validator