Proof of Theorem gchhar
| Step | Hyp | Ref
| Expression |
| 1 | | harcl 8466 |
. . . 4
⊢
(har‘𝐴) ∈
On |
| 2 | | simp3 1063 |
. . . 4
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ∈
GCH) |
| 3 | | cdadom3 9010 |
. . . 4
⊢
(((har‘𝐴)
∈ On ∧ 𝒫 𝐴
∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝒫 𝐴)) |
| 4 | 1, 2, 3 | sylancr 695 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(har‘𝐴) ≼
((har‘𝐴)
+𝑐 𝒫 𝐴)) |
| 5 | | domnsym 8086 |
. . . . . . . . 9
⊢ (ω
≼ 𝐴 → ¬
𝐴 ≺
ω) |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → ¬
𝐴 ≺
ω) |
| 7 | | isfinite 8549 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺
ω) |
| 8 | 6, 7 | sylnibr 319 |
. . . . . . 7
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → ¬
𝐴 ∈
Fin) |
| 9 | | pwfi 8261 |
. . . . . . 7
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
| 10 | 8, 9 | sylnib 318 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → ¬
𝒫 𝐴 ∈
Fin) |
| 11 | | cdadom3 9010 |
. . . . . . 7
⊢
((𝒫 𝐴 ∈
GCH ∧ (har‘𝐴)
∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 (har‘𝐴))) |
| 12 | 2, 1, 11 | sylancl 694 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≼
(𝒫 𝐴
+𝑐 (har‘𝐴))) |
| 13 | | ovex 6678 |
. . . . . . . 8
⊢
(𝒫 𝐴
+𝑐 (har‘𝐴)) ∈ V |
| 14 | 13 | canth2 8113 |
. . . . . . 7
⊢
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 +𝑐
(har‘𝐴)) |
| 15 | | pwcdaen 9007 |
. . . . . . . . 9
⊢
((𝒫 𝐴 ∈
GCH ∧ (har‘𝐴)
∈ On) → 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ (𝒫 𝒫
𝐴 × 𝒫
(har‘𝐴))) |
| 16 | 2, 1, 15 | sylancl 694 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝒫 𝐴
+𝑐 (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫
(har‘𝐴))) |
| 17 | | pwexg 4850 |
. . . . . . . . . . 11
⊢
(𝒫 𝐴 ∈
GCH → 𝒫 𝒫 𝐴 ∈ V) |
| 18 | 2, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝒫 𝐴
∈ V) |
| 19 | | simp2 1062 |
. . . . . . . . . . 11
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → 𝐴 ∈ GCH) |
| 20 | | harwdom 8495 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ GCH →
(har‘𝐴)
≼* 𝒫 (𝐴 × 𝐴)) |
| 21 | | wdompwdom 8483 |
. . . . . . . . . . 11
⊢
((har‘𝐴)
≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫
(𝐴 × 𝐴)) |
| 22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . . 10
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (har‘𝐴)
≼ 𝒫 𝒫 (𝐴 × 𝐴)) |
| 23 | | xpdom2g 8056 |
. . . . . . . . . 10
⊢
((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫
(𝐴 × 𝐴)) → (𝒫 𝒫
𝐴 × 𝒫
(har‘𝐴)) ≼
(𝒫 𝒫 𝐴
× 𝒫 𝒫 (𝐴 × 𝐴))) |
| 24 | 18, 22, 23 | syl2anc 693 |
. . . . . . . . 9
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝒫 𝐴
× 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫
(𝐴 × 𝐴))) |
| 25 | | xpexg 6960 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V) |
| 26 | 19, 19, 25 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V) |
| 27 | | pwexg 4850 |
. . . . . . . . . . . . 13
⊢ ((𝐴 × 𝐴) ∈ V → 𝒫 (𝐴 × 𝐴) ∈ V) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝐴 × 𝐴) ∈ V) |
| 29 | | pwcdaen 9007 |
. . . . . . . . . . . 12
⊢
((𝒫 𝐴 ∈
GCH ∧ 𝒫 (𝐴
× 𝐴) ∈ V) →
𝒫 (𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫
(𝐴 × 𝐴))) |
| 30 | 2, 28, 29 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫
(𝐴 × 𝐴))) |
| 31 | 30 | ensymd 8007 |
. . . . . . . . . 10
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝒫 𝐴
× 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 +𝑐 𝒫
(𝐴 × 𝐴))) |
| 32 | | enrefg 7987 |
. . . . . . . . . . . . . 14
⊢
(𝒫 𝐴 ∈
GCH → 𝒫 𝐴
≈ 𝒫 𝐴) |
| 33 | 2, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≈
𝒫 𝐴) |
| 34 | | gchxpidm 9491 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴) |
| 35 | 19, 8, 34 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴) |
| 36 | | pwen 8133 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) |
| 38 | | cdaen 8995 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝐴
≈ 𝒫 𝐴 ∧
𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 +𝑐 𝒫
(𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫
𝐴)) |
| 39 | 33, 37, 38 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
| 40 | | gchcdaidm 9490 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝐴 ∈
GCH ∧ ¬ 𝒫 𝐴
∈ Fin) → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) |
| 41 | 2, 10, 40 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝐴
+𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) |
| 42 | | entr 8008 |
. . . . . . . . . . . 12
⊢
(((𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫
𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 +𝑐 𝒫
(𝐴 × 𝐴)) ≈ 𝒫 𝐴) |
| 43 | 39, 41, 42 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴) |
| 44 | | pwen 8133 |
. . . . . . . . . . 11
⊢
((𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 +𝑐 𝒫
(𝐴 × 𝐴)) ≈ 𝒫 𝒫
𝐴) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . 10
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝒫 𝐴
+𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) |
| 46 | | entr 8008 |
. . . . . . . . . 10
⊢
(((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 +𝑐 𝒫
(𝐴 × 𝐴)) ∧ 𝒫 (𝒫
𝐴 +𝑐
𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫
𝐴) → (𝒫
𝒫 𝐴 ×
𝒫 𝒫 (𝐴
× 𝐴)) ≈
𝒫 𝒫 𝐴) |
| 47 | 31, 45, 46 | syl2anc 693 |
. . . . . . . . 9
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝒫 𝐴
× 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) |
| 48 | | domentr 8015 |
. . . . . . . . 9
⊢
(((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫
𝐴 × 𝒫
𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫
𝐴 × 𝒫
𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫
𝐴) → (𝒫
𝒫 𝐴 ×
𝒫 (har‘𝐴))
≼ 𝒫 𝒫 𝐴) |
| 49 | 24, 47, 48 | syl2anc 693 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝒫 𝐴
× 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) |
| 50 | | endomtr 8014 |
. . . . . . . 8
⊢
((𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ (𝒫 𝒫
𝐴 × 𝒫
(har‘𝐴)) ∧
(𝒫 𝒫 𝐴
× 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫
𝐴 +𝑐
(har‘𝐴)) ≼
𝒫 𝒫 𝐴) |
| 51 | 16, 49, 50 | syl2anc 693 |
. . . . . . 7
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝒫 𝐴
+𝑐 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) |
| 52 | | sdomdomtr 8093 |
. . . . . . 7
⊢
(((𝒫 𝐴
+𝑐 (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 +𝑐
(har‘𝐴)) ∧
𝒫 (𝒫 𝐴
+𝑐 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 +𝑐
(har‘𝐴)) ≺
𝒫 𝒫 𝐴) |
| 53 | 14, 51, 52 | sylancr 695 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≺ 𝒫 𝒫 𝐴) |
| 54 | | gchen1 9447 |
. . . . . 6
⊢
(((𝒫 𝐴
∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐
(har‘𝐴)) ∧
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 +𝑐
(har‘𝐴))) |
| 55 | 2, 10, 12, 53, 54 | syl22anc 1327 |
. . . . 5
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≈
(𝒫 𝐴
+𝑐 (har‘𝐴))) |
| 56 | | cdacomen 9003 |
. . . . 5
⊢
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≈ ((har‘𝐴) +𝑐 𝒫 𝐴) |
| 57 | | entr 8008 |
. . . . 5
⊢
((𝒫 𝐴
≈ (𝒫 𝐴
+𝑐 (har‘𝐴)) ∧ (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ ((har‘𝐴) +𝑐
𝒫 𝐴)) →
𝒫 𝐴 ≈
((har‘𝐴)
+𝑐 𝒫 𝐴)) |
| 58 | 55, 56, 57 | sylancl 694 |
. . . 4
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≈
((har‘𝐴)
+𝑐 𝒫 𝐴)) |
| 59 | 58 | ensymd 8007 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
((har‘𝐴)
+𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) |
| 60 | | domentr 8015 |
. . 3
⊢
(((har‘𝐴)
≼ ((har‘𝐴)
+𝑐 𝒫 𝐴) ∧ ((har‘𝐴) +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴) |
| 61 | 4, 59, 60 | syl2anc 693 |
. 2
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(har‘𝐴) ≼
𝒫 𝐴) |
| 62 | | gchcdaidm 9490 |
. . . . . 6
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 𝐴) ≈ 𝐴) |
| 63 | 19, 8, 62 | syl2anc 693 |
. . . . 5
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 +𝑐 𝐴) ≈ 𝐴) |
| 64 | | pwen 8133 |
. . . . 5
⊢ ((𝐴 +𝑐 𝐴) ≈ 𝐴 → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴) |
| 65 | 63, 64 | syl 17 |
. . . 4
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝐴
+𝑐 𝐴)
≈ 𝒫 𝐴) |
| 66 | | cdadom3 9010 |
. . . . . . . 8
⊢ ((𝐴 ∈ GCH ∧
(har‘𝐴) ∈ On)
→ 𝐴 ≼ (𝐴 +𝑐
(har‘𝐴))) |
| 67 | 19, 1, 66 | sylancl 694 |
. . . . . . 7
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 +𝑐 (har‘𝐴))) |
| 68 | | harndom 8469 |
. . . . . . . 8
⊢ ¬
(har‘𝐴) ≼ 𝐴 |
| 69 | | cdadom3 9010 |
. . . . . . . . . . 11
⊢
(((har‘𝐴)
∈ On ∧ 𝐴 ∈
GCH) → (har‘𝐴)
≼ ((har‘𝐴)
+𝑐 𝐴)) |
| 70 | 1, 19, 69 | sylancr 695 |
. . . . . . . . . 10
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(har‘𝐴) ≼
((har‘𝐴)
+𝑐 𝐴)) |
| 71 | | cdacomen 9003 |
. . . . . . . . . 10
⊢
((har‘𝐴)
+𝑐 𝐴)
≈ (𝐴
+𝑐 (har‘𝐴)) |
| 72 | | domentr 8015 |
. . . . . . . . . 10
⊢
(((har‘𝐴)
≼ ((har‘𝐴)
+𝑐 𝐴)
∧ ((har‘𝐴)
+𝑐 𝐴)
≈ (𝐴
+𝑐 (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 +𝑐 (har‘𝐴))) |
| 73 | 70, 71, 72 | sylancl 694 |
. . . . . . . . 9
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(har‘𝐴) ≼
(𝐴 +𝑐
(har‘𝐴))) |
| 74 | | domen2 8103 |
. . . . . . . . 9
⊢ (𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 +𝑐 (har‘𝐴)))) |
| 75 | 73, 74 | syl5ibrcom 237 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)) → (har‘𝐴) ≼ 𝐴)) |
| 76 | 68, 75 | mtoi 190 |
. . . . . . 7
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → ¬
𝐴 ≈ (𝐴 +𝑐
(har‘𝐴))) |
| 77 | | brsdom 7978 |
. . . . . . 7
⊢ (𝐴 ≺ (𝐴 +𝑐 (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 +𝑐 (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)))) |
| 78 | 67, 76, 77 | sylanbrc 698 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 +𝑐 (har‘𝐴))) |
| 79 | | canth2g 8114 |
. . . . . . . . 9
⊢ (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴) |
| 80 | | sdomdom 7983 |
. . . . . . . . 9
⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) |
| 81 | | cdadom1 9008 |
. . . . . . . . 9
⊢ (𝐴 ≼ 𝒫 𝐴 → (𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐
(har‘𝐴))) |
| 82 | 19, 79, 80, 81 | 4syl 19 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 +𝑐
(har‘𝐴)) ≼
(𝒫 𝐴
+𝑐 (har‘𝐴))) |
| 83 | | cdadom2 9009 |
. . . . . . . . 9
⊢
((har‘𝐴)
≼ 𝒫 𝐴 →
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
| 84 | 61, 83 | syl 17 |
. . . . . . . 8
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(𝒫 𝐴
+𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
| 85 | | domtr 8009 |
. . . . . . . 8
⊢ (((𝐴 +𝑐
(har‘𝐴)) ≼
(𝒫 𝐴
+𝑐 (har‘𝐴)) ∧ (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫
𝐴)) → (𝐴 +𝑐
(har‘𝐴)) ≼
(𝒫 𝐴
+𝑐 𝒫 𝐴)) |
| 86 | 82, 84, 85 | syl2anc 693 |
. . . . . . 7
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 +𝑐
(har‘𝐴)) ≼
(𝒫 𝐴
+𝑐 𝒫 𝐴)) |
| 87 | | domentr 8015 |
. . . . . . 7
⊢ (((𝐴 +𝑐
(har‘𝐴)) ≼
(𝒫 𝐴
+𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝐴) |
| 88 | 86, 41, 87 | syl2anc 693 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 +𝑐
(har‘𝐴)) ≼
𝒫 𝐴) |
| 89 | | gchen2 9448 |
. . . . . 6
⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 +𝑐 (har‘𝐴)) ∧ (𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 +𝑐 (har‘𝐴)) ≈ 𝒫 𝐴) |
| 90 | 19, 8, 78, 88, 89 | syl22anc 1327 |
. . . . 5
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) → (𝐴 +𝑐
(har‘𝐴)) ≈
𝒫 𝐴) |
| 91 | 90 | ensymd 8007 |
. . . 4
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≈ (𝐴 +𝑐
(har‘𝐴))) |
| 92 | | entr 8008 |
. . . 4
⊢
((𝒫 (𝐴
+𝑐 𝐴)
≈ 𝒫 𝐴 ∧
𝒫 𝐴 ≈ (𝐴 +𝑐
(har‘𝐴))) →
𝒫 (𝐴
+𝑐 𝐴)
≈ (𝐴
+𝑐 (har‘𝐴))) |
| 93 | 65, 91, 92 | syl2anc 693 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 (𝐴
+𝑐 𝐴)
≈ (𝐴
+𝑐 (har‘𝐴))) |
| 94 | | endom 7982 |
. . 3
⊢
(𝒫 (𝐴
+𝑐 𝐴)
≈ (𝐴
+𝑐 (har‘𝐴)) → 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (har‘𝐴))) |
| 95 | | pwcdadom 9038 |
. . 3
⊢
(𝒫 (𝐴
+𝑐 𝐴)
≼ (𝐴
+𝑐 (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴)) |
| 96 | 93, 94, 95 | 3syl 18 |
. 2
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
𝒫 𝐴 ≼
(har‘𝐴)) |
| 97 | | sbth 8080 |
. 2
⊢
(((har‘𝐴)
≼ 𝒫 𝐴 ∧
𝒫 𝐴 ≼
(har‘𝐴)) →
(har‘𝐴) ≈
𝒫 𝐴) |
| 98 | 61, 96, 97 | syl2anc 693 |
1
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫
𝐴 ∈ GCH) →
(har‘𝐴) ≈
𝒫 𝐴) |