![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rectbntr0 | Structured version Visualization version GIF version |
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
rectbntr0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11026 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | canth2 8113 | . . 3 ⊢ ℕ ≺ 𝒫 ℕ |
3 | domnsym 8086 | . . 3 ⊢ (𝒫 ℕ ≼ ℕ → ¬ ℕ ≺ 𝒫 ℕ) | |
4 | 2, 3 | mt2 191 | . 2 ⊢ ¬ 𝒫 ℕ ≼ ℕ |
5 | retop 22565 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | simpl 473 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
7 | uniretop 22566 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
8 | 7 | ntropn 20853 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
9 | 5, 6, 8 | sylancr 695 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
10 | opnreen 22634 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅) → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ) | |
11 | 10 | ex 450 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
13 | reex 10027 | . . . . . . . 8 ⊢ ℝ ∈ V | |
14 | 13 | ssex 4802 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
15 | 7 | ntrss2 20861 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
16 | 5, 15 | mpan 706 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
17 | ssdomg 8001 | . . . . . . 7 ⊢ (𝐴 ∈ V → (((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴 → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴)) | |
18 | 14, 16, 17 | sylc 65 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴) |
19 | domtr 8009 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) | |
20 | 18, 19 | sylan 488 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) |
21 | ensym 8005 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴)) | |
22 | endomtr 8014 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) → 𝒫 ℕ ≼ ℕ) | |
23 | 22 | expcom 451 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ → (𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) → 𝒫 ℕ ≼ ℕ)) |
24 | 20, 21, 23 | syl2im 40 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≼ ℕ)) |
25 | 12, 24 | syld 47 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → 𝒫 ℕ ≼ ℕ)) |
26 | 25 | necon1bd 2812 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (¬ 𝒫 ℕ ≼ ℕ → ((int‘(topGen‘ran (,)))‘𝐴) = ∅)) |
27 | 4, 26 | mpi 20 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 class class class wbr 4653 ran crn 5115 ‘cfv 5888 ≈ cen 7952 ≼ cdom 7953 ≺ csdm 7954 ℝcr 9935 ℕcn 11020 (,)cioo 12175 topGenctg 16098 Topctop 20698 intcnt 20821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-ntr 20824 |
This theorem is referenced by: ioonct 39764 |
Copyright terms: Public domain | W3C validator |