MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   GIF version

Theorem card2inf 8460
Description: The definition cardval2 8817 has the curious property that for non-numerable sets (for which ndmfv 6218 yields ), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1 𝐴 ∈ V
Assertion
Ref Expression
card2inf (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem card2inf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ≺ 𝐴))
2 breq1 4656 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
3 breq1 4656 . . . . 5 (𝑥 = suc 𝑛 → (𝑥𝐴 ↔ suc 𝑛𝐴))
4 0elon 5778 . . . . . . . 8 ∅ ∈ On
5 breq1 4656 . . . . . . . . 9 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≈ 𝐴))
65rspcev 3309 . . . . . . . 8 ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
74, 6mpan 706 . . . . . . 7 (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦𝐴)
87con3i 150 . . . . . 6 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ¬ ∅ ≈ 𝐴)
9 card2inf.1 . . . . . . . 8 𝐴 ∈ V
1090dom 8090 . . . . . . 7 ∅ ≼ 𝐴
11 brsdom 7978 . . . . . . 7 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
1210, 11mpbiran 953 . . . . . 6 (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)
138, 12sylibr 224 . . . . 5 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∅ ≺ 𝐴)
14 sucdom2 8156 . . . . . . . 8 (𝑛𝐴 → suc 𝑛𝐴)
1514ad2antll 765 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
16 nnon 7071 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ∈ On)
17 suceloni 7013 . . . . . . . . . 10 (𝑛 ∈ On → suc 𝑛 ∈ On)
18 breq1 4656 . . . . . . . . . . . 12 (𝑦 = suc 𝑛 → (𝑦𝐴 ↔ suc 𝑛𝐴))
1918rspcev 3309 . . . . . . . . . . 11 ((suc 𝑛 ∈ On ∧ suc 𝑛𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
2019ex 450 . . . . . . . . . 10 (suc 𝑛 ∈ On → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2116, 17, 203syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2221con3dimp 457 . . . . . . . 8 ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦𝐴) → ¬ suc 𝑛𝐴)
2322adantrr 753 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → ¬ suc 𝑛𝐴)
24 brsdom 7978 . . . . . . 7 (suc 𝑛𝐴 ↔ (suc 𝑛𝐴 ∧ ¬ suc 𝑛𝐴))
2515, 23, 24sylanbrc 698 . . . . . 6 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
2625exp32 631 . . . . 5 (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑛𝐴 → suc 𝑛𝐴)))
271, 2, 3, 13, 26finds2 7094 . . . 4 (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴𝑥𝐴))
2827com12 32 . . 3 (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑥 ∈ ω → 𝑥𝐴))
2928ralrimiv 2965 . 2 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∀𝑥 ∈ ω 𝑥𝐴)
30 omsson 7069 . . 3 ω ⊆ On
31 ssrab 3680 . . 3 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥𝐴))
3230, 31mpbiran 953 . 2 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑥 ∈ ω 𝑥𝐴)
3329, 32sylibr 224 1 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  Oncon0 5723  suc csuc 5725  ωcom 7065  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator