| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4656 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) |
| 2 | | breq1 4656 |
. . . . 5
⊢ (𝑥 = 𝑛 → (𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴)) |
| 3 | | breq1 4656 |
. . . . 5
⊢ (𝑥 = suc 𝑛 → (𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴)) |
| 4 | | 0elon 5778 |
. . . . . . . 8
⊢ ∅
∈ On |
| 5 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴)) |
| 6 | 5 | rspcev 3309 |
. . . . . . . 8
⊢ ((∅
∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 7 | 4, 6 | mpan 706 |
. . . . . . 7
⊢ (∅
≈ 𝐴 →
∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 8 | 7 | con3i 150 |
. . . . . 6
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴) |
| 9 | | card2inf.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
| 10 | 9 | 0dom 8090 |
. . . . . . 7
⊢ ∅
≼ 𝐴 |
| 11 | | brsdom 7978 |
. . . . . . 7
⊢ (∅
≺ 𝐴 ↔ (∅
≼ 𝐴 ∧ ¬
∅ ≈ 𝐴)) |
| 12 | 10, 11 | mpbiran 953 |
. . . . . 6
⊢ (∅
≺ 𝐴 ↔ ¬
∅ ≈ 𝐴) |
| 13 | 8, 12 | sylibr 224 |
. . . . 5
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴) |
| 14 | | sucdom2 8156 |
. . . . . . . 8
⊢ (𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴) |
| 15 | 14 | ad2antll 765 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≼ 𝐴) |
| 16 | | nnon 7071 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
| 17 | | suceloni 7013 |
. . . . . . . . . 10
⊢ (𝑛 ∈ On → suc 𝑛 ∈ On) |
| 18 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑛 → (𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴)) |
| 19 | 18 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((suc
𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 20 | 19 | ex 450 |
. . . . . . . . . 10
⊢ (suc
𝑛 ∈ On → (suc
𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
| 21 | 16, 17, 20 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (suc
𝑛 ≈ 𝐴 → ∃𝑦 ∈ On 𝑦 ≈ 𝐴)) |
| 22 | 21 | con3dimp 457 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ ¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴) → ¬ suc 𝑛 ≈ 𝐴) |
| 23 | 22 | adantrr 753 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → ¬ suc 𝑛 ≈ 𝐴) |
| 24 | | brsdom 7978 |
. . . . . . 7
⊢ (suc
𝑛 ≺ 𝐴 ↔ (suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴)) |
| 25 | 15, 23, 24 | sylanbrc 698 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴)) → suc 𝑛 ≺ 𝐴) |
| 26 | 25 | exp32 631 |
. . . . 5
⊢ (𝑛 ∈ ω → (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴))) |
| 27 | 1, 2, 3, 13, 26 | finds2 7094 |
. . . 4
⊢ (𝑥 ∈ ω → (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
| 28 | 27 | com12 32 |
. . 3
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (𝑥 ∈ ω → 𝑥 ≺ 𝐴)) |
| 29 | 28 | ralrimiv 2965 |
. 2
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
| 30 | | omsson 7069 |
. . 3
⊢ ω
⊆ On |
| 31 | | ssrab 3680 |
. . 3
⊢ (ω
⊆ {𝑥 ∈ On
∣ 𝑥 ≺ 𝐴} ↔ (ω ⊆ On
∧ ∀𝑥 ∈
ω 𝑥 ≺ 𝐴)) |
| 32 | 30, 31 | mpbiran 953 |
. 2
⊢ (ω
⊆ {𝑥 ∈ On
∣ 𝑥 ≺ 𝐴} ↔ ∀𝑥 ∈ ω 𝑥 ≺ 𝐴) |
| 33 | 29, 32 | sylibr 224 |
1
⊢ (¬
∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |