MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   Unicode version

Theorem card2inf 8460
Description: The definition cardval2 8817 has the curious property that for non-numerable sets (for which ndmfv 6218 yields  (/)), it still evaluates to a nonempty set, and indeed it contains  om. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1  |-  A  e. 
_V
Assertion
Ref Expression
card2inf  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  om  C_  { x  e.  On  |  x  ~<  A } )
Distinct variable group:    x, A, y

Proof of Theorem card2inf
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . 5  |-  ( x  =  (/)  ->  ( x 
~<  A  <->  (/)  ~<  A )
)
2 breq1 4656 . . . . 5  |-  ( x  =  n  ->  (
x  ~<  A  <->  n  ~<  A ) )
3 breq1 4656 . . . . 5  |-  ( x  =  suc  n  -> 
( x  ~<  A  <->  suc  n  ~<  A ) )
4 0elon 5778 . . . . . . . 8  |-  (/)  e.  On
5 breq1 4656 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( y 
~~  A  <->  (/)  ~~  A
) )
65rspcev 3309 . . . . . . . 8  |-  ( (
(/)  e.  On  /\  (/)  ~~  A
)  ->  E. y  e.  On  y  ~~  A
)
74, 6mpan 706 . . . . . . 7  |-  ( (/)  ~~  A  ->  E. y  e.  On  y  ~~  A
)
87con3i 150 . . . . . 6  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  -.  (/)  ~~  A )
9 card2inf.1 . . . . . . . 8  |-  A  e. 
_V
1090dom 8090 . . . . . . 7  |-  (/)  ~<_  A
11 brsdom 7978 . . . . . . 7  |-  ( (/)  ~<  A 
<->  ( (/)  ~<_  A  /\  -.  (/)  ~~  A )
)
1210, 11mpbiran 953 . . . . . 6  |-  ( (/)  ~<  A 
<->  -.  (/)  ~~  A )
138, 12sylibr 224 . . . . 5  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  (/)  ~<  A )
14 sucdom2 8156 . . . . . . . 8  |-  ( n 
~<  A  ->  suc  n  ~<_  A )
1514ad2antll 765 . . . . . . 7  |-  ( ( n  e.  om  /\  ( -.  E. y  e.  On  y  ~~  A  /\  n  ~<  A ) )  ->  suc  n  ~<_  A )
16 nnon 7071 . . . . . . . . . 10  |-  ( n  e.  om  ->  n  e.  On )
17 suceloni 7013 . . . . . . . . . 10  |-  ( n  e.  On  ->  suc  n  e.  On )
18 breq1 4656 . . . . . . . . . . . 12  |-  ( y  =  suc  n  -> 
( y  ~~  A  <->  suc  n  ~~  A ) )
1918rspcev 3309 . . . . . . . . . . 11  |-  ( ( suc  n  e.  On  /\ 
suc  n  ~~  A
)  ->  E. y  e.  On  y  ~~  A
)
2019ex 450 . . . . . . . . . 10  |-  ( suc  n  e.  On  ->  ( suc  n  ~~  A  ->  E. y  e.  On  y  ~~  A ) )
2116, 17, 203syl 18 . . . . . . . . 9  |-  ( n  e.  om  ->  ( suc  n  ~~  A  ->  E. y  e.  On  y  ~~  A ) )
2221con3dimp 457 . . . . . . . 8  |-  ( ( n  e.  om  /\  -.  E. y  e.  On  y  ~~  A )  ->  -.  suc  n  ~~  A
)
2322adantrr 753 . . . . . . 7  |-  ( ( n  e.  om  /\  ( -.  E. y  e.  On  y  ~~  A  /\  n  ~<  A ) )  ->  -.  suc  n  ~~  A )
24 brsdom 7978 . . . . . . 7  |-  ( suc  n  ~<  A  <->  ( suc  n  ~<_  A  /\  -.  suc  n  ~~  A ) )
2515, 23, 24sylanbrc 698 . . . . . 6  |-  ( ( n  e.  om  /\  ( -.  E. y  e.  On  y  ~~  A  /\  n  ~<  A ) )  ->  suc  n  ~<  A )
2625exp32 631 . . . . 5  |-  ( n  e.  om  ->  ( -.  E. y  e.  On  y  ~~  A  ->  (
n  ~<  A  ->  suc  n  ~<  A ) ) )
271, 2, 3, 13, 26finds2 7094 . . . 4  |-  ( x  e.  om  ->  ( -.  E. y  e.  On  y  ~~  A  ->  x  ~<  A ) )
2827com12 32 . . 3  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  (
x  e.  om  ->  x 
~<  A ) )
2928ralrimiv 2965 . 2  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  A. x  e.  om  x  ~<  A )
30 omsson 7069 . . 3  |-  om  C_  On
31 ssrab 3680 . . 3  |-  ( om  C_  { x  e.  On  |  x  ~<  A }  <->  ( om  C_  On  /\  A. x  e.  om  x  ~<  A ) )
3230, 31mpbiran 953 . 2  |-  ( om  C_  { x  e.  On  |  x  ~<  A }  <->  A. x  e.  om  x  ~<  A )
3329, 32sylibr 224 1  |-  ( -. 
E. y  e.  On  y  ~~  A  ->  om  C_  { x  e.  On  |  x  ~<  A } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   Oncon0 5723   suc csuc 5725   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator