Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptf Structured version   Visualization version   GIF version

Theorem limsupequzmptf 39963
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptf.j 𝑗𝜑
limsupequzmptf.o 𝑗𝐴
limsupequzmptf.p 𝑗𝐵
limsupequzmptf.m (𝜑𝑀 ∈ ℤ)
limsupequzmptf.n (𝜑𝑁 ∈ ℤ)
limsupequzmptf.a 𝐴 = (ℤ𝑀)
limsupequzmptf.b 𝐵 = (ℤ𝑁)
limsupequzmptf.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptf.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmptf (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝑗,𝑉   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem limsupequzmptf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . 3 𝑘𝜑
2 limsupequzmptf.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupequzmptf.n . . 3 (𝜑𝑁 ∈ ℤ)
4 limsupequzmptf.a . . 3 𝐴 = (ℤ𝑀)
5 limsupequzmptf.b . . 3 𝐵 = (ℤ𝑁)
6 limsupequzmptf.j . . . . . 6 𝑗𝜑
7 limsupequzmptf.o . . . . . . 7 𝑗𝐴
87nfcri 2758 . . . . . 6 𝑗 𝑘𝐴
96, 8nfan 1828 . . . . 5 𝑗(𝜑𝑘𝐴)
10 nfcsb1v 3549 . . . . . 6 𝑗𝑘 / 𝑗𝐶
11 nfcv 2764 . . . . . 6 𝑗𝑉
1210, 11nfel 2777 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑉
139, 12nfim 1825 . . . 4 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
14 eleq1 2689 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1514anbi2d 740 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
16 csbeq1a 3542 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑘 / 𝑗𝐶)
1716eleq1d 2686 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑉𝑘 / 𝑗𝐶𝑉))
1815, 17imbi12d 334 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐶𝑉) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)))
19 limsupequzmptf.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
2013, 18, 19chvar 2262 . . 3 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
21 limsupequzmptf.p . . . . . . 7 𝑗𝐵
2221nfcri 2758 . . . . . 6 𝑗 𝑘𝐵
236, 22nfan 1828 . . . . 5 𝑗(𝜑𝑘𝐵)
24 nfcv 2764 . . . . . 6 𝑗𝑊
2510, 24nfel 2777 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑊
2623, 25nfim 1825 . . . 4 𝑗((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
27 eleq1 2689 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
2827anbi2d 740 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐵) ↔ (𝜑𝑘𝐵)))
2916eleq1d 2686 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑊𝑘 / 𝑗𝐶𝑊))
3028, 29imbi12d 334 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐵) → 𝐶𝑊) ↔ ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)))
31 limsupequzmptf.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
3226, 30, 31chvar 2262 . . 3 ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
331, 2, 3, 4, 5, 20, 32limsupequzmpt 39961 . 2 (𝜑 → (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
34 nfcv 2764 . . . . 5 𝑘𝐴
35 nfcv 2764 . . . . 5 𝑘𝐶
367, 34, 35, 10, 16cbvmptf 4748 . . . 4 (𝑗𝐴𝐶) = (𝑘𝐴𝑘 / 𝑗𝐶)
3736fveq2i 6194 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶))
3837a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)))
39 nfcv 2764 . . . . 5 𝑘𝐵
4021, 39, 35, 10, 16cbvmptf 4748 . . . 4 (𝑗𝐵𝐶) = (𝑘𝐵𝑘 / 𝑗𝐶)
4140fveq2i 6194 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶))
4241a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
4333, 38, 423eqtr4d 2666 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  csb 3533  cmpt 4729  cfv 5888  cz 11377  cuz 11687  lim supclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ico 12181  df-limsup 14202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator