Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim Structured version   Visualization version   GIF version

Theorem smflim 40985
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflim.n 𝑚𝐹
smflim.x 𝑥𝐹
smflim.m (𝜑𝑀 ∈ ℤ)
smflim.z 𝑍 = (ℤ𝑀)
smflim.s (𝜑𝑆 ∈ SAlg)
smflim.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim
Dummy variables 𝑘 𝑖 𝑗 𝑙 𝑦 𝑠 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2 𝑎𝜑
2 smflim.s . 2 (𝜑𝑆 ∈ SAlg)
3 smflim.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
4 nfcv 2764 . . . . . . 7 𝑥𝑍
5 nfcv 2764 . . . . . . . 8 𝑥(ℤ𝑛)
6 smflim.x . . . . . . . . . 10 𝑥𝐹
7 nfcv 2764 . . . . . . . . . 10 𝑥𝑚
86, 7nffv 6198 . . . . . . . . 9 𝑥(𝐹𝑚)
98nfdm 5367 . . . . . . . 8 𝑥dom (𝐹𝑚)
105, 9nfiin 4549 . . . . . . 7 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
114, 10nfiun 4548 . . . . . 6 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1211ssrab2f 39300 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
133, 12eqsstri 3635 . . . 4 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1413a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
15 uzssz 11707 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
16 smflim.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
1716eleq2i 2693 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 206 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1915, 18sseldi 3601 . . . . . . . 8 (𝑛𝑍𝑛 ∈ ℤ)
20 uzid 11702 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2119, 20syl 17 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221adantl 482 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
232adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
24 smflim.f . . . . . . . 8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2524ffvelrnda 6359 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
26 eqid 2622 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2723, 25, 26smfdmss 40942 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ⊆ 𝑆)
28 smflim.n . . . . . . . . . 10 𝑚𝐹
29 nfcv 2764 . . . . . . . . . 10 𝑚𝑛
3028, 29nffv 6198 . . . . . . . . 9 𝑚(𝐹𝑛)
3130nfdm 5367 . . . . . . . 8 𝑚dom (𝐹𝑛)
32 nfcv 2764 . . . . . . . 8 𝑚 𝑆
3331, 32nfss 3596 . . . . . . 7 𝑚dom (𝐹𝑛) ⊆ 𝑆
34 fveq2 6191 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534dmeqd 5326 . . . . . . . 8 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
3635sseq1d 3632 . . . . . . 7 (𝑚 = 𝑛 → (dom (𝐹𝑚) ⊆ 𝑆 ↔ dom (𝐹𝑛) ⊆ 𝑆))
3733, 36rspce 3304 . . . . . 6 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐹𝑛) ⊆ 𝑆) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
3822, 27, 37syl2anc 693 . . . . 5 ((𝜑𝑛𝑍) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
39 iinss 4571 . . . . 5 (∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4038, 39syl 17 . . . 4 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4140iunssd 39271 . . 3 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4214, 41sstrd 3613 . 2 (𝜑𝐷 𝑆)
43 nfv 1843 . . . . 5 𝑚𝜑
44 nfcv 2764 . . . . . 6 𝑚𝑦
45 nfmpt1 4747 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
46 nfcv 2764 . . . . . . . . 9 𝑚dom ⇝
4745, 46nfel 2777 . . . . . . . 8 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
48 nfcv 2764 . . . . . . . . 9 𝑚𝑍
49 nfii1 4551 . . . . . . . . 9 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5048, 49nfiun 4548 . . . . . . . 8 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5147, 50nfrab 3123 . . . . . . 7 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
523, 51nfcxfr 2762 . . . . . 6 𝑚𝐷
5344, 52nfel 2777 . . . . 5 𝑚 𝑦𝐷
5443, 53nfan 1828 . . . 4 𝑚(𝜑𝑦𝐷)
55 nfcv 2764 . . . 4 𝑤𝐹
562adantr 481 . . . . . 6 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
5724ffvelrnda 6359 . . . . . 6 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
58 eqid 2622 . . . . . 6 dom (𝐹𝑚) = dom (𝐹𝑚)
5956, 57, 58smff 40941 . . . . 5 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
6059adantlr 751 . . . 4 (((𝜑𝑦𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
61 nfcv 2764 . . . . . . 7 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
62 nfv 1843 . . . . . . 7 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2764 . . . . . . . . . 10 𝑥𝑦
648, 63nffv 6198 . . . . . . . . 9 𝑥((𝐹𝑚)‘𝑦)
654, 64nfmpt 4746 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
6665nfel1 2779 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
67 fveq2 6191 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6867mpteq2dv 4745 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
6968eleq1d 2686 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
7011, 61, 62, 66, 69cbvrab 3198 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
71 nfcv 2764 . . . . . . . . . . . . 13 𝑙dom (𝐹𝑚)
72 nfcv 2764 . . . . . . . . . . . . . . 15 𝑚𝑙
7328, 72nffv 6198 . . . . . . . . . . . . . 14 𝑚(𝐹𝑙)
7473nfdm 5367 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑙)
75 fveq2 6191 . . . . . . . . . . . . . 14 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
7675dmeqd 5326 . . . . . . . . . . . . 13 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
7771, 74, 76cbviin 4558 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
7877a1i 11 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
79 fveq2 6191 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
80 eqidd 2623 . . . . . . . . . . . 12 ((𝑛 = 𝑖𝑙 ∈ (ℤ𝑖)) → dom (𝐹𝑙) = dom (𝐹𝑙))
8179, 80iineq12dv 39289 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8278, 81eqtrd 2656 . . . . . . . . . 10 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8382cbviunv 4559 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙)
8483eleq2i 2693 . . . . . . . 8 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
85 nfcv 2764 . . . . . . . . . 10 𝑙𝑍
86 nfcv 2764 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑦)
8773, 44nffv 6198 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑦)
8875fveq1d 6193 . . . . . . . . . 10 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑙)‘𝑦))
8948, 85, 86, 87, 88cbvmptf 4748 . . . . . . . . 9 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
9089eleq1i 2692 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ )
9184, 90anbi12i 733 . . . . . . 7 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ))
9291rabbia2 3187 . . . . . 6 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
933, 70, 923eqtri 2648 . . . . 5 𝐷 = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
94 fveq2 6191 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑤))
9594mpteq2dv 4745 . . . . . . . 8 (𝑦 = 𝑤 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)))
9695eleq1d 2686 . . . . . . 7 (𝑦 = 𝑤 → ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ))
9796cbvrabv 3199 . . . . . 6 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ }
98 fveq2 6191 . . . . . . . . . . . . 13 (𝑙 = 𝑚 → (𝐹𝑙) = (𝐹𝑚))
9998dmeqd 5326 . . . . . . . . . . . 12 (𝑙 = 𝑚 → dom (𝐹𝑙) = dom (𝐹𝑚))
10074, 71, 99cbviin 4558 . . . . . . . . . . 11 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
101100a1i 11 . . . . . . . . . 10 (𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
102101iuneq2i 4539 . . . . . . . . 9 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
103102eleq2i 2693 . . . . . . . 8 (𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ↔ 𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
104 nfcv 2764 . . . . . . . . . . 11 𝑚𝑤
10573, 104nffv 6198 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑤)
106 nfcv 2764 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑤)
10798fveq1d 6193 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑤) = ((𝐹𝑚)‘𝑤))
10885, 48, 105, 106, 107cbvmptf 4748 . . . . . . . . 9 (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
109108eleq1i 2692 . . . . . . . 8 ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ )
110103, 109anbi12i 733 . . . . . . 7 ((𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ) ↔ (𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ ))
111110rabbia2 3187 . . . . . 6 {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11297, 111eqtri 2644 . . . . 5 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11393, 112eqtri 2644 . . . 4 𝐷 = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
114 simpr 477 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
11554, 28, 55, 16, 60, 113, 114fnlimfvre 39906 . . 3 ((𝜑𝑦𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) ∈ ℝ)
116 smflim.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
117 nfrab1 3122 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1183, 117nfcxfr 2762 . . . . 5 𝑥𝐷
119 nfcv 2764 . . . . 5 𝑦𝐷
120 nfcv 2764 . . . . 5 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
121 nfcv 2764 . . . . . 6 𝑥
122121, 65nffv 6198 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
12368fveq2d 6195 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
124118, 119, 120, 122, 123cbvmptf 4748 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
125116, 124eqtri 2644 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
126115, 125fmptd 6385 . 2 (𝜑𝐺:𝐷⟶ℝ)
127 smflim.m . . . 4 (𝜑𝑀 ∈ ℤ)
128127adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
1292adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
13024adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
131 nfcv 2764 . . . . . . . . 9 𝑥𝑙
1326, 131nffv 6198 . . . . . . . 8 𝑥(𝐹𝑙)
133132, 63nffv 6198 . . . . . . 7 𝑥((𝐹𝑙)‘𝑦)
1344, 133nfmpt 4746 . . . . . 6 𝑥(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
135121, 134nffv 6198 . . . . 5 𝑥( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
136 nfcv 2764 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑥)
137 nfcv 2764 . . . . . . . . . 10 𝑚𝑥
13873, 137nffv 6198 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑥)
13975fveq1d 6193 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑙)‘𝑥))
14048, 85, 136, 138, 139cbvmptf 4748 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥))
141140a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)))
142 simpl 473 . . . . . . . . 9 ((𝑥 = 𝑦𝑙𝑍) → 𝑥 = 𝑦)
143142fveq2d 6195 . . . . . . . 8 ((𝑥 = 𝑦𝑙𝑍) → ((𝐹𝑙)‘𝑥) = ((𝐹𝑙)‘𝑦))
144143mpteq2dva 4744 . . . . . . 7 (𝑥 = 𝑦 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
145141, 144eqtrd 2656 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
146145fveq2d 6195 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
147118, 119, 120, 135, 146cbvmptf 4748 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
148116, 147eqtri 2644 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
149 simpr 477 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
150 nfcv 2764 . . . . . . . . 9 𝑚 <
151 nfcv 2764 . . . . . . . . 9 𝑚(𝑎 + (1 / 𝑗))
15287, 150, 151nfbr 4699 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
153152, 74nfrab 3123 . . . . . . 7 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))}
154 nfcv 2764 . . . . . . . 8 𝑚𝑡
155154, 74nfin 3820 . . . . . . 7 𝑚(𝑡 ∩ dom (𝐹𝑙))
156153, 155nfeq 2776 . . . . . 6 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))
157 nfcv 2764 . . . . . 6 𝑚𝑆
158156, 157nfrab 3123 . . . . 5 𝑚{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
159 nfcv 2764 . . . . 5 𝑘{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
160 nfcv 2764 . . . . 5 𝑙{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
161 nfcv 2764 . . . . 5 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
162 nfcv 2764 . . . . . . . . . . . 12 𝑦dom (𝐹𝑙)
163132nfdm 5367 . . . . . . . . . . . 12 𝑥dom (𝐹𝑙)
164 nfcv 2764 . . . . . . . . . . . . 13 𝑥 <
165 nfcv 2764 . . . . . . . . . . . . 13 𝑥(𝑎 + (1 / 𝑗))
166133, 164, 165nfbr 4699 . . . . . . . . . . . 12 𝑥((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
167 nfv 1843 . . . . . . . . . . . 12 𝑦((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))
168 fveq2 6191 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑥))
169168breq1d 4663 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))))
170162, 163, 166, 167, 169cbvrab 3198 . . . . . . . . . . 11 {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))}
171170a1i 11 . . . . . . . . . 10 (𝑡 = 𝑠 → {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))})
172 ineq1 3807 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑡 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑙)))
173171, 172eqeq12d 2637 . . . . . . . . 9 (𝑡 = 𝑠 → ({𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))))
174173cbvrabv 3199 . . . . . . . 8 {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))}
175174a1i 11 . . . . . . 7 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))})
17699eleq2d 2687 . . . . . . . . . . 11 (𝑙 = 𝑚 → (𝑥 ∈ dom (𝐹𝑙) ↔ 𝑥 ∈ dom (𝐹𝑚)))
17798fveq1d 6193 . . . . . . . . . . . 12 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑥) = ((𝐹𝑚)‘𝑥))
178177breq1d 4663 . . . . . . . . . . 11 (𝑙 = 𝑚 → (((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))))
179176, 178anbi12d 747 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑙) ∧ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)))))
180179rabbidva2 3186 . . . . . . . . 9 (𝑙 = 𝑚 → {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))})
18199ineq2d 3814 . . . . . . . . 9 (𝑙 = 𝑚 → (𝑠 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑚)))
182180, 181eqeq12d 2637 . . . . . . . 8 (𝑙 = 𝑚 → ({𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
183182rabbidv 3189 . . . . . . 7 (𝑙 = 𝑚 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
184175, 183eqtrd 2656 . . . . . 6 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
185 oveq2 6658 . . . . . . . . . . 11 (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘))
186185oveq2d 6666 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑎 + (1 / 𝑗)) = (𝑎 + (1 / 𝑘)))
187186breq2d 4665 . . . . . . . . 9 (𝑗 = 𝑘 → (((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))))
188187rabbidv 3189 . . . . . . . 8 (𝑗 = 𝑘 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))})
189188eqeq1d 2624 . . . . . . 7 (𝑗 = 𝑘 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
190189rabbidv 3189 . . . . . 6 (𝑗 = 𝑘 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
191184, 190sylan9eq 2676 . . . . 5 ((𝑙 = 𝑚𝑗 = 𝑘) → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
192158, 159, 160, 161, 191cbvmpt2 6734 . . . 4 (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
193192eqcomi 2631 . . 3 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))})
194128, 16, 129, 130, 93, 148, 149, 193smflimlem6 40984 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑦𝐷 ∣ (𝐺𝑦) ≤ 𝑎} ∈ (𝑆t 𝐷))
1951, 2, 42, 126, 194issmfled 40966 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wnfc 2751  wrex 2913  {crab 2916  cin 3573  wss 3574   cuni 4436   ciun 4520   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  1c1 9937   + caddc 9939   < clt 10074   / cdiv 10684  cn 11020  cz 11377  cuz 11687  cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smflim2  41012
  Copyright terms: Public domain W3C validator