Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevath Structured version   Visualization version   GIF version

Theorem cevath 41058
Description: Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹, 𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴 correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹 intersect at one point 𝑂. Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 41057 three times and then using cevathlem1 41056 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 41053. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevath (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevath
StepHypRef Expression
1 cevath.sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.a . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1074 . . . . . 6 (𝜑𝐵 ∈ ℂ)
4 cevath.c . . . . . 6 (𝜑𝑂 ∈ ℂ)
53, 4subcld 10392 . . . . 5 (𝜑 → (𝐵𝑂) ∈ ℂ)
62simp3d 1075 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76, 4subcld 10392 . . . . 5 (𝜑 → (𝐶𝑂) ∈ ℂ)
85, 7jca 554 . . . 4 (𝜑 → ((𝐵𝑂) ∈ ℂ ∧ (𝐶𝑂) ∈ ℂ))
91, 8sigarimcd 41051 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ)
102simp1d 1073 . . . 4 (𝜑𝐴 ∈ ℂ)
11 cevath.b . . . . 5 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
1211simp1d 1073 . . . 4 (𝜑𝐹 ∈ ℂ)
1310, 12subcld 10392 . . 3 (𝜑 → (𝐴𝐹) ∈ ℂ)
1410, 4subcld 10392 . . . . 5 (𝜑 → (𝐴𝑂) ∈ ℂ)
157, 14jca 554 . . . 4 (𝜑 → ((𝐶𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ))
161, 15sigarimcd 41051 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ)
179, 13, 163jca 1242 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ ∧ (𝐴𝐹) ∈ ℂ ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ))
1812, 3subcld 10392 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
1914, 5jca 554 . . . 4 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
201, 19sigarimcd 41051 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
2111simp3d 1075 . . . 4 (𝜑𝐸 ∈ ℂ)
226, 21subcld 10392 . . 3 (𝜑 → (𝐶𝐸) ∈ ℂ)
2318, 20, 223jca 1242 . 2 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐸) ∈ ℂ))
2421, 10subcld 10392 . . 3 (𝜑 → (𝐸𝐴) ∈ ℂ)
2511simp2d 1074 . . . 4 (𝜑𝐷 ∈ ℂ)
263, 25subcld 10392 . . 3 (𝜑 → (𝐵𝐷) ∈ ℂ)
2725, 6subcld 10392 . . 3 (𝜑 → (𝐷𝐶) ∈ ℂ)
2824, 26, 273jca 1242 . 2 (𝜑 → ((𝐸𝐴) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
29 cevath.f . . . 4 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
3029simp2d 1074 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0)
3129simp1d 1073 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0)
3229simp3d 1075 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0)
3330, 31, 323jca 1242 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
346, 10, 33jca 1242 . . . 4 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
3521, 12, 253jca 1242 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ))
36 cevath.d . . . . . 6 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
3736simp3d 1075 . . . . 5 (𝜑 → ((𝐶𝑂)𝐺(𝐹𝑂)) = 0)
3836simp1d 1073 . . . . 5 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
3936simp2d 1074 . . . . 5 (𝜑 → ((𝐵𝑂)𝐺(𝐸𝑂)) = 0)
4037, 38, 393jca 1242 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0))
41 cevath.e . . . . . 6 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
4241simp3d 1075 . . . . 5 (𝜑 → ((𝐶𝐸)𝐺(𝐴𝐸)) = 0)
4341simp1d 1073 . . . . 5 (𝜑 → ((𝐴𝐹)𝐺(𝐵𝐹)) = 0)
4441simp2d 1074 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
4542, 43, 443jca 1242 . . . 4 (𝜑 → (((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
4632, 31, 303jca 1242 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0))
471, 34, 35, 4, 40, 45, 46cevathlem2 41057 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)))
483, 6, 103jca 1242 . . . 4 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
4925, 21, 123jca 1242 . . . 4 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
5039, 37, 383jca 1242 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0))
5144, 42, 433jca 1242 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0))
5230, 32, 313jca 1242 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0))
531, 48, 49, 4, 50, 51, 52cevathlem2 41057 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)))
541, 2, 11, 4, 36, 41, 29cevathlem2 41057 . . 3 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
5547, 53, 543jca 1242 . 2 (𝜑 → ((((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)) ∧ (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)) ∧ (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶))))
5617, 23, 28, 33, 55cevathlem1 41056 1 (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  0cc0 9936   · cmul 9941  cmin 10266  ccj 13836  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator