MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cic Structured version   Visualization version   Unicode version

Theorem cic 16459
Description: Objects  X and  Y in a category are isomorphic provided that there is an isomorphism  f : X --> Y, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cic.i  |-  I  =  (  Iso  `  C
)
cic.b  |-  B  =  ( Base `  C
)
cic.c  |-  ( ph  ->  C  e.  Cat )
cic.x  |-  ( ph  ->  X  e.  B )
cic.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
cic  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  E. f 
f  e.  ( X I Y ) ) )
Distinct variable groups:    f, I    f, X    f, Y
Allowed substitution hints:    ph( f)    B( f)    C( f)

Proof of Theorem cic
StepHypRef Expression
1 cic.i . . 3  |-  I  =  (  Iso  `  C
)
2 cic.b . . 3  |-  B  =  ( Base `  C
)
3 cic.c . . 3  |-  ( ph  ->  C  e.  Cat )
4 cic.x . . 3  |-  ( ph  ->  X  e.  B )
5 cic.y . . 3  |-  ( ph  ->  Y  e.  B )
61, 2, 3, 4, 5brcic 16458 . 2  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  ( X I Y )  =/=  (/) ) )
7 n0 3931 . 2  |-  ( ( X I Y )  =/=  (/)  <->  E. f  f  e.  ( X I Y ) )
86, 7syl6bb 276 1  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  E. f 
f  e.  ( X I Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325    Iso ciso 16406    ~=c𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  brcici  16460  cicsym  16464  cictr  16465  initoeu1w  16662  initoeu2  16666  termoeu1w  16669  nzerooringczr  42072
  Copyright terms: Public domain W3C validator