Proof of Theorem cnmpt22
| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 6653 |
. . . 4
⊢ (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) |
| 2 | | cnmpt21.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | cnmpt21.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | | txtopon 21394 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 6 | | cnmpt22.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 7 | | cnmpt21.a |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 8 | | cnf2 21053 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
| 9 | 5, 6, 7, 8 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
| 10 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
| 11 | 10 | fmpt2 7237 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
| 12 | 9, 11 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
| 13 | | rsp2 2936 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) |
| 15 | 14 | 3impib 1262 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍) |
| 16 | | cnmpt22.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
| 17 | | cnmpt2t.b |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| 18 | | cnf2 21053 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘𝑊) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
| 19 | 5, 16, 17, 18 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
| 20 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) |
| 21 | 20 | fmpt2 7237 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
| 22 | 19, 21 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊) |
| 23 | | rsp2 2936 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) |
| 24 | 22, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) |
| 25 | 24 | 3impib 1262 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊) |
| 26 | 15, 25 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊)) |
| 27 | | txtopon 21394 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑊)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) |
| 28 | 6, 16, 27 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) |
| 29 | | cnmpt22.c |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| 30 | | cntop2 21045 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ Top) |
| 32 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ 𝑁 =
∪ 𝑁 |
| 33 | 32 | toptopon 20722 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 34 | 31, 33 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 35 | | cnf2 21053 |
. . . . . . . . . 10
⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁)
∧ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
| 36 | 28, 34, 29, 35 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
| 37 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) = (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) |
| 38 | 37 | fmpt2 7237 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
| 39 | 36, 38 | sylibr 224 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁) |
| 40 | | r2al 2939 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
| 41 | 39, 40 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
| 42 | 41 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
| 43 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑍 ↔ 𝐴 ∈ 𝑍)) |
| 44 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑤 = 𝐵 → (𝑤 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) |
| 45 | 43, 44 | bi2anan9 917 |
. . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → ((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) ↔ (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊))) |
| 46 | | cnmpt22.d |
. . . . . . . . 9
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) |
| 47 | 46 | eleq1d 2686 |
. . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝐶 ∈ ∪ 𝑁 ↔ 𝐷 ∈ ∪ 𝑁)) |
| 48 | 45, 47 | imbi12d 334 |
. . . . . . 7
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) ↔ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) |
| 49 | 48 | spc2gv 3296 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) → ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) |
| 50 | 26, 42, 26, 49 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ ∪ 𝑁) |
| 51 | 46, 37 | ovmpt2ga 6790 |
. . . . 5
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ∧ 𝐷 ∈ ∪ 𝑁) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) |
| 52 | 15, 25, 50, 51 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) |
| 53 | 1, 52 | syl5eqr 2670 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) = 𝐷) |
| 54 | 53 | mpt2eq3dva 6719 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷)) |
| 55 | 2, 3, 7, 17 | cnmpt2t 21476 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) |
| 56 | 2, 3, 55, 29 | cnmpt21f 21475 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| 57 | 54, 56 | eqeltrrd 2702 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |