Proof of Theorem cnmpt22
| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 6653 |
. . . 4
   
     
        |
| 2 | | cnmpt21.j |
. . . . . . . . . 10
 TopOn    |
| 3 | | cnmpt21.k |
. . . . . . . . . 10
 TopOn    |
| 4 | | txtopon 21394 |
. . . . . . . . . 10
  TopOn  TopOn  
  TopOn      |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . . . . . . 9
   TopOn 
    |
| 6 | | cnmpt22.l |
. . . . . . . . 9
 TopOn    |
| 7 | | cnmpt21.a |
. . . . . . . . 9
  
       |
| 8 | | cnf2 21053 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
| 9 | 5, 6, 7, 8 | syl3anc 1326 |
. . . . . . . 8
  
         |
| 10 | | eqid 2622 |
. . . . . . . . 9
       |
| 11 | 10 | fmpt2 7237 |
. . . . . . . 8
 

           |
| 12 | 9, 11 | sylibr 224 |
. . . . . . 7
  
  |
| 13 | | rsp2 2936 |
. . . . . . 7
 

 
    |
| 14 | 12, 13 | syl 17 |
. . . . . 6
       |
| 15 | 14 | 3impib 1262 |
. . . . 5
 

  |
| 16 | | cnmpt22.m |
. . . . . . . . 9
 TopOn    |
| 17 | | cnmpt2t.b |
. . . . . . . . 9
  
       |
| 18 | | cnf2 21053 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
| 19 | 5, 16, 17, 18 | syl3anc 1326 |
. . . . . . . 8
  
         |
| 20 | | eqid 2622 |
. . . . . . . . 9
       |
| 21 | 20 | fmpt2 7237 |
. . . . . . . 8
 

           |
| 22 | 19, 21 | sylibr 224 |
. . . . . . 7
  
  |
| 23 | | rsp2 2936 |
. . . . . . 7
 

 
    |
| 24 | 22, 23 | syl 17 |
. . . . . 6
       |
| 25 | 24 | 3impib 1262 |
. . . . 5
 

  |
| 26 | 15, 25 | jca 554 |
. . . . . 6
 


   |
| 27 | | txtopon 21394 |
. . . . . . . . . . 11
  TopOn  TopOn  
  TopOn      |
| 28 | 6, 16, 27 | syl2anc 693 |
. . . . . . . . . 10
   TopOn 
    |
| 29 | | cnmpt22.c |
. . . . . . . . . . . 12
  
       |
| 30 | | cntop2 21045 |
. . . . . . . . . . . 12
  
    
  |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
   |
| 32 | | eqid 2622 |
. . . . . . . . . . . 12
   |
| 33 | 32 | toptopon 20722 |
. . . . . . . . . . 11

TopOn     |
| 34 | 31, 33 | sylib 208 |
. . . . . . . . . 10
 TopOn     |
| 35 | | cnf2 21053 |
. . . . . . . . . 10
    TopOn 
  TopOn            
          |
| 36 | 28, 34, 29, 35 | syl3anc 1326 |
. . . . . . . . 9
  
          |
| 37 | | eqid 2622 |
. . . . . . . . . 10
 
     |
| 38 | 37 | fmpt2 7237 |
. . . . . . . . 9
 


            |
| 39 | 36, 38 | sylibr 224 |
. . . . . . . 8
  
   |
| 40 | | r2al 2939 |
. . . . . . . 8
 


           |
| 41 | 39, 40 | sylib 208 |
. . . . . . 7
            |
| 42 | 41 | 3ad2ant1 1082 |
. . . . . 6
 

           |
| 43 | | eleq1 2689 |
. . . . . . . . 9
 
   |
| 44 | | eleq1 2689 |
. . . . . . . . 9
 
   |
| 45 | 43, 44 | bi2anan9 917 |
. . . . . . . 8
 
   

    |
| 46 | | cnmpt22.d |
. . . . . . . . 9
 
   |
| 47 | 46 | eleq1d 2686 |
. . . . . . . 8
 
       |
| 48 | 45, 47 | imbi12d 334 |
. . . . . . 7
 
      
 
      |
| 49 | 48 | spc2gv 3296 |
. . . . . 6
 
                   |
| 50 | 26, 42, 26, 49 | syl3c 66 |
. . . . 5
 

   |
| 51 | 46, 37 | ovmpt2ga 6790 |
. . . . 5
 
     
     |
| 52 | 15, 25, 50, 51 | syl3anc 1326 |
. . . 4
 

   
     |
| 53 | 1, 52 | syl5eqr 2670 |
. . 3
 

  
         |
| 54 | 53 | mpt2eq3dva 6719 |
. 2
  
                |
| 55 | 2, 3, 7, 17 | cnmpt2t 21476 |
. . 3
  
            |
| 56 | 2, 3, 55, 29 | cnmpt21f 21475 |
. 2
  
                 |
| 57 | 54, 56 | eqeltrrd 2702 |
1
  
       |