MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk2 Structured version   Visualization version   GIF version

Theorem cnmptk2 21489
Description: The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk2.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
Assertion
Ref Expression
cnmptk2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk2
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 6199 . . . . 5 𝑥((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
2 nfcv 2764 . . . . 5 𝑥𝑘
31, 2nffv 6198 . . . 4 𝑥(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
4 nfcv 2764 . . . . . . 7 𝑦𝑋
5 nfmpt1 4747 . . . . . . 7 𝑦(𝑦𝑌𝐴)
64, 5nfmpt 4746 . . . . . 6 𝑦(𝑥𝑋 ↦ (𝑦𝑌𝐴))
7 nfcv 2764 . . . . . 6 𝑦𝑤
86, 7nffv 6198 . . . . 5 𝑦((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
9 nfcv 2764 . . . . 5 𝑦𝑘
108, 9nffv 6198 . . . 4 𝑦(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
11 nfcv 2764 . . . 4 𝑤(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
12 nfcv 2764 . . . 4 𝑘(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
13 fveq2 6191 . . . . . 6 (𝑤 = 𝑥 → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥))
1413fveq1d 6193 . . . . 5 (𝑤 = 𝑥 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘))
15 fveq2 6191 . . . . 5 (𝑘 = 𝑦 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
1614, 15sylan9eq 2676 . . . 4 ((𝑤 = 𝑥𝑘 = 𝑦) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
173, 10, 11, 12, 16cbvmpt2 6734 . . 3 (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
18 simplr 792 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
19 cnmptk1p.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 cnmptk1p.n . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ 𝑛-Locally Comp)
21 nllytop 21276 . . . . . . . . . . . . . 14 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
23 cnmptk1p.l . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (TopOn‘𝑍))
24 topontop 20718 . . . . . . . . . . . . . 14 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
2523, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
26 eqid 2622 . . . . . . . . . . . . . 14 (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾)
2726xkotopon 21403 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2822, 25, 27syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
29 cnmptk2.a . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
30 cnf2 21053 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3119, 28, 29, 30syl3anc 1326 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
32 eqid 2622 . . . . . . . . . . . 12 (𝑥𝑋 ↦ (𝑦𝑌𝐴)) = (𝑥𝑋 ↦ (𝑦𝑌𝐴))
3332fmpt 6381 . . . . . . . . . . 11 (∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿) ↔ (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3431, 33sylibr 224 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
3534r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
3635adantr 481 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
3732fvmpt2 6291 . . . . . . . 8 ((𝑥𝑋 ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3818, 36, 37syl2anc 693 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3938fveq1d 6193 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = ((𝑦𝑌𝐴)‘𝑦))
40 simpr 477 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
41 cnmptk1p.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
4241adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
4323adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
44 cnf2 21053 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
4542, 43, 35, 44syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
46 eqid 2622 . . . . . . . . . 10 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
4746fmpt 6381 . . . . . . . . 9 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
4845, 47sylibr 224 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
4948r19.21bi 2932 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴𝑍)
5046fvmpt2 6291 . . . . . . 7 ((𝑦𝑌𝐴𝑍) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
5140, 49, 50syl2anc 693 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
5239, 51eqtrd 2656 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
53523impa 1259 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
5453mpt2eq3dva 6719 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)) = (𝑥𝑋, 𝑦𝑌𝐴))
5517, 54syl5eq 2668 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌𝐴))
5619, 41cnmpt1st 21471 . . . 4 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑤) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
5719, 41, 56, 29cnmpt21f 21475 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ^ko 𝐾)))
5819, 41cnmpt2nd 21472 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑘) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
59 eqid 2622 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
60 toponuni 20719 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
6141, 60syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
62 mpt2eq12 6715 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
6359, 61, 62sylancr 695 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
64 eqid 2622 . . . . . 6 𝐾 = 𝐾
65 eqid 2622 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
6664, 65xkofvcn 21487 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿))
6720, 25, 66syl2anc 693 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿))
6863, 67eqeltrd 2701 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿))
69 fveq1 6190 . . . 4 (𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧))
70 fveq2 6191 . . . 4 (𝑧 = 𝑘 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
7169, 70sylan9eq 2676 . . 3 ((𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) ∧ 𝑧 = 𝑘) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
7219, 41, 57, 58, 28, 41, 68, 71cnmpt22 21477 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
7355, 72eqeltrrd 2702 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   cuni 4436  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  Compccmp 21189  𝑛-Locally cnlly 21268   ×t ctx 21363   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-nlly 21270  df-tx 21365  df-xko 21366
This theorem is referenced by:  xkocnv  21617
  Copyright terms: Public domain W3C validator