MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkofvcn Structured version   Visualization version   GIF version

Theorem xkofvcn 21487
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 21459.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkofvcn.1 𝑋 = 𝑅
xkofvcn.2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
Assertion
Ref Expression
xkofvcn ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn 𝑆))
Distinct variable groups:   𝑥,𝑓,𝑅   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem xkofvcn
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkofvcn.2 . 2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
2 nllytop 21276 . . . 4 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
3 eqid 2622 . . . . 5 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
43xkotopon 21403 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
52, 4sylan 488 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
62adantr 481 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
7 xkofvcn.1 . . . . 5 𝑋 = 𝑅
87toptopon 20722 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
96, 8sylib 208 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ (TopOn‘𝑋))
105, 9cnmpt1st 21471 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑓) ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn (𝑆 ^ko 𝑅)))
115, 9cnmpt2nd 21472 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑥) ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn 𝑅))
12 1on 7567 . . . . . . 7 1𝑜 ∈ On
13 distopon 20801 . . . . . . 7 (1𝑜 ∈ On → 𝒫 1𝑜 ∈ (TopOn‘1𝑜))
1412, 13mp1i 13 . . . . . 6 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1𝑜 ∈ (TopOn‘1𝑜))
15 xkoccn 21422 . . . . . 6 ((𝒫 1𝑜 ∈ (TopOn‘1𝑜) ∧ 𝑅 ∈ (TopOn‘𝑋)) → (𝑦𝑋 ↦ (1𝑜 × {𝑦})) ∈ (𝑅 Cn (𝑅 ^ko 𝒫 1𝑜)))
1614, 9, 15syl2anc 693 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑦𝑋 ↦ (1𝑜 × {𝑦})) ∈ (𝑅 Cn (𝑅 ^ko 𝒫 1𝑜)))
17 sneq 4187 . . . . . 6 (𝑦 = 𝑥 → {𝑦} = {𝑥})
1817xpeq2d 5139 . . . . 5 (𝑦 = 𝑥 → (1𝑜 × {𝑦}) = (1𝑜 × {𝑥}))
195, 9, 11, 9, 16, 18cnmpt21 21474 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (1𝑜 × {𝑥})) ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn (𝑅 ^ko 𝒫 1𝑜)))
20 distop 20799 . . . . . 6 (1𝑜 ∈ On → 𝒫 1𝑜 ∈ Top)
2112, 20mp1i 13 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1𝑜 ∈ Top)
22 eqid 2622 . . . . . 6 (𝑅 ^ko 𝒫 1𝑜) = (𝑅 ^ko 𝒫 1𝑜)
2322xkotopon 21403 . . . . 5 ((𝒫 1𝑜 ∈ Top ∧ 𝑅 ∈ Top) → (𝑅 ^ko 𝒫 1𝑜) ∈ (TopOn‘(𝒫 1𝑜 Cn 𝑅)))
2421, 6, 23syl2anc 693 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑅 ^ko 𝒫 1𝑜) ∈ (TopOn‘(𝒫 1𝑜 Cn 𝑅)))
25 simpl 473 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ 𝑛-Locally Comp)
26 simpr 477 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
27 eqid 2622 . . . . . 6 (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1𝑜 Cn 𝑅) ↦ (𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1𝑜 Cn 𝑅) ↦ (𝑔))
2827xkococn 21463 . . . . 5 ((𝒫 1𝑜 ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1𝑜 Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆 ^ko 𝑅) ×t (𝑅 ^ko 𝒫 1𝑜)) Cn (𝑆 ^ko 𝒫 1𝑜)))
2921, 25, 26, 28syl3anc 1326 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1𝑜 Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆 ^ko 𝑅) ×t (𝑅 ^ko 𝒫 1𝑜)) Cn (𝑆 ^ko 𝒫 1𝑜)))
30 coeq1 5279 . . . . 5 (𝑔 = 𝑓 → (𝑔) = (𝑓))
31 coeq2 5280 . . . . 5 ( = (1𝑜 × {𝑥}) → (𝑓) = (𝑓 ∘ (1𝑜 × {𝑥})))
3230, 31sylan9eq 2676 . . . 4 ((𝑔 = 𝑓 = (1𝑜 × {𝑥})) → (𝑔) = (𝑓 ∘ (1𝑜 × {𝑥})))
335, 9, 10, 19, 5, 24, 29, 32cnmpt22 21477 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓 ∘ (1𝑜 × {𝑥}))) ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn (𝑆 ^ko 𝒫 1𝑜)))
34 eqid 2622 . . . . 5 (𝑆 ^ko 𝒫 1𝑜) = (𝑆 ^ko 𝒫 1𝑜)
3534xkotopon 21403 . . . 4 ((𝒫 1𝑜 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝒫 1𝑜) ∈ (TopOn‘(𝒫 1𝑜 Cn 𝑆)))
3621, 26, 35syl2anc 693 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝒫 1𝑜) ∈ (TopOn‘(𝒫 1𝑜 Cn 𝑆)))
37 0lt1o 7584 . . . . 5 ∅ ∈ 1𝑜
3837a1i 11 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → ∅ ∈ 1𝑜)
39 unipw 4918 . . . . . 6 𝒫 1𝑜 = 1𝑜
4039eqcomi 2631 . . . . 5 1𝑜 = 𝒫 1𝑜
4140xkopjcn 21459 . . . 4 ((𝒫 1𝑜 ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈ 1𝑜) → (𝑔 ∈ (𝒫 1𝑜 Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆 ^ko 𝒫 1𝑜) Cn 𝑆))
4221, 26, 38, 41syl3anc 1326 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝒫 1𝑜 Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆 ^ko 𝒫 1𝑜) Cn 𝑆))
43 fveq1 6190 . . . 4 (𝑔 = (𝑓 ∘ (1𝑜 × {𝑥})) → (𝑔‘∅) = ((𝑓 ∘ (1𝑜 × {𝑥}))‘∅))
44 vex 3203 . . . . . . 7 𝑥 ∈ V
4544fconst 6091 . . . . . 6 (1𝑜 × {𝑥}):1𝑜⟶{𝑥}
46 fvco3 6275 . . . . . 6 (((1𝑜 × {𝑥}):1𝑜⟶{𝑥} ∧ ∅ ∈ 1𝑜) → ((𝑓 ∘ (1𝑜 × {𝑥}))‘∅) = (𝑓‘((1𝑜 × {𝑥})‘∅)))
4745, 37, 46mp2an 708 . . . . 5 ((𝑓 ∘ (1𝑜 × {𝑥}))‘∅) = (𝑓‘((1𝑜 × {𝑥})‘∅))
4844fvconst2 6469 . . . . . . 7 (∅ ∈ 1𝑜 → ((1𝑜 × {𝑥})‘∅) = 𝑥)
4937, 48ax-mp 5 . . . . . 6 ((1𝑜 × {𝑥})‘∅) = 𝑥
5049fveq2i 6194 . . . . 5 (𝑓‘((1𝑜 × {𝑥})‘∅)) = (𝑓𝑥)
5147, 50eqtri 2644 . . . 4 ((𝑓 ∘ (1𝑜 × {𝑥}))‘∅) = (𝑓𝑥)
5243, 51syl6eq 2672 . . 3 (𝑔 = (𝑓 ∘ (1𝑜 × {𝑥})) → (𝑔‘∅) = (𝑓𝑥))
535, 9, 33, 36, 42, 52cnmpt21 21474 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥)) ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn 𝑆))
541, 53syl5eqel 2705 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  ccom 5118  Oncon0 5723  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  Compccmp 21189  𝑛-Locally cnlly 21268   ×t ctx 21363   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-nlly 21270  df-tx 21365  df-xko 21366
This theorem is referenced by:  cnmptk1p  21488  cnmptk2  21489
  Copyright terms: Public domain W3C validator