| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connsubclo | Structured version Visualization version GIF version | ||
| Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 |
| connsubclo.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| connsubclo.4 | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
| connsubclo.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
| connsubclo.6 | ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
| connsubclo.7 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| connsubclo | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 | . . . 4 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
| 2 | connsubclo.4 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
| 3 | connsubclo.7 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
| 4 | cldrcl 20830 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | connsubclo.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | topopn 20711 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 9 | connsubclo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 10 | 8, 9 | ssexd 4805 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 11 | connsubclo.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
| 12 | elrestr 16089 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 13 | 5, 10, 11, 12 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 14 | connsubclo.6 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) | |
| 15 | eqid 2622 | . . . . . 6 ⊢ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴) | |
| 16 | ineq1 3807 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 17 | 16 | eqeq2d 2632 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴) ↔ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴))) |
| 18 | 17 | rspcev 3309 | . . . . . 6 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 19 | 3, 15, 18 | sylancl 694 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 20 | 6 | restcld 20976 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
| 21 | 5, 9, 20 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
| 22 | 19, 21 | mpbird 247 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| 23 | 1, 2, 13, 14, 22 | connclo 21218 | . . 3 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∪ (𝐽 ↾t 𝐴)) |
| 24 | 6 | restuni 20966 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 25 | 5, 9, 24 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 26 | 23, 25 | eqtr4d 2659 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
| 27 | sseqin2 3817 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 28 | 26, 27 | sylibr 224 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 ‘cfv 5888 (class class class)co 6650 ↾t crest 16081 Topctop 20698 Clsdccld 20820 Conncconn 21214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-conn 21215 |
| This theorem is referenced by: conncn 21229 conncompclo 21238 |
| Copyright terms: Public domain | W3C validator |