MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   GIF version

Theorem conncn 21229
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x 𝑋 = 𝐽
conncn.j (𝜑𝐽 ∈ Conn)
conncn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
conncn.u (𝜑𝑈𝐾)
conncn.c (𝜑𝑈 ∈ (Clsd‘𝐾))
conncn.a (𝜑𝐴𝑋)
conncn.1 (𝜑 → (𝐹𝐴) ∈ 𝑈)
Assertion
Ref Expression
conncn (𝜑𝐹:𝑋𝑈)

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 conncn.x . . . . 5 𝑋 = 𝐽
3 eqid 2622 . . . . 5 𝐾 = 𝐾
42, 3cnf 21050 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹:𝑋 𝐾)
6 ffn 6045 . . 3 (𝐹:𝑋 𝐾𝐹 Fn 𝑋)
75, 6syl 17 . 2 (𝜑𝐹 Fn 𝑋)
8 frn 6053 . . . 4 (𝐹:𝑋 𝐾 → ran 𝐹 𝐾)
95, 8syl 17 . . 3 (𝜑 → ran 𝐹 𝐾)
10 conncn.j . . . 4 (𝜑𝐽 ∈ Conn)
11 dffn4 6121 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
127, 11sylib 208 . . . . 5 (𝜑𝐹:𝑋onto→ran 𝐹)
13 cntop2 21045 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
141, 13syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
153restuni 20966 . . . . . . 7 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1614, 9, 15syl2anc 693 . . . . . 6 (𝜑 → ran 𝐹 = (𝐾t ran 𝐹))
17 foeq3 6113 . . . . . 6 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1816, 17syl 17 . . . . 5 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1912, 18mpbid 222 . . . 4 (𝜑𝐹:𝑋onto (𝐾t ran 𝐹))
203toptopon 20722 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2114, 20sylib 208 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
22 ssid 3624 . . . . . . 7 ran 𝐹 ⊆ ran 𝐹
2322a1i 11 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
24 cnrest2 21090 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2521, 23, 9, 24syl3anc 1326 . . . . 5 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
261, 25mpbid 222 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
27 eqid 2622 . . . . 5 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2827cnconn 21225 . . . 4 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Conn)
2910, 19, 26, 28syl3anc 1326 . . 3 (𝜑 → (𝐾t ran 𝐹) ∈ Conn)
30 conncn.u . . 3 (𝜑𝑈𝐾)
31 conncn.1 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝑈)
32 conncn.a . . . . 5 (𝜑𝐴𝑋)
33 fnfvelrn 6356 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
347, 32, 33syl2anc 693 . . . 4 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
35 inelcm 4032 . . . 4 (((𝐹𝐴) ∈ 𝑈 ∧ (𝐹𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅)
3631, 34, 35syl2anc 693 . . 3 (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅)
37 conncn.c . . 3 (𝜑𝑈 ∈ (Clsd‘𝐾))
383, 9, 29, 30, 36, 37connsubclo 21227 . 2 (𝜑 → ran 𝐹𝑈)
39 df-f 5892 . 2 (𝐹:𝑋𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹𝑈))
407, 38, 39sylanbrc 698 1 (𝜑𝐹:𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915   cuni 4436  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715  Clsdccld 20820   Cn ccn 21028  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031  df-conn 21215
This theorem is referenced by:  pconnconn  31213  cvmliftmolem1  31263  cvmlift2lem9  31293  cvmlift3lem6  31306
  Copyright terms: Public domain W3C validator