MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconnsubb Structured version   Visualization version   GIF version

Theorem nconnsubb 21226
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconnsubb.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
nconnsubb.3 (𝜑𝐴𝑋)
nconnsubb.4 (𝜑𝑈𝐽)
nconnsubb.5 (𝜑𝑉𝐽)
nconnsubb.6 (𝜑 → (𝑈𝐴) ≠ ∅)
nconnsubb.7 (𝜑 → (𝑉𝐴) ≠ ∅)
nconnsubb.8 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
nconnsubb.9 (𝜑𝐴 ⊆ (𝑈𝑉))
Assertion
Ref Expression
nconnsubb (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)

Proof of Theorem nconnsubb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconnsubb.9 . 2 (𝜑𝐴 ⊆ (𝑈𝑉))
2 nconnsubb.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 nconnsubb.3 . . . 4 (𝜑𝐴𝑋)
4 connsuba 21223 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
52, 3, 4syl2anc 693 . . 3 (𝜑 → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
6 nconnsubb.6 . . . . 5 (𝜑 → (𝑈𝐴) ≠ ∅)
7 nconnsubb.7 . . . . 5 (𝜑 → (𝑉𝐴) ≠ ∅)
8 nconnsubb.8 . . . . 5 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
96, 7, 83jca 1242 . . . 4 (𝜑 → ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅))
10 nconnsubb.4 . . . . 5 (𝜑𝑈𝐽)
11 nconnsubb.5 . . . . 5 (𝜑𝑉𝐽)
12 ineq1 3807 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐴) = (𝑈𝐴))
1312neeq1d 2853 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐴) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
14 ineq1 3807 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1514ineq1d 3813 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
1615eqeq1d 2624 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑦) ∩ 𝐴) = ∅))
1713, 163anbi13d 1401 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅)))
18 uneq1 3760 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1918ineq1d 3813 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
2019neeq1d 2853 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴))
2117, 20imbi12d 334 . . . . . 6 (𝑥 = 𝑈 → ((((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)))
22 ineq1 3807 . . . . . . . . 9 (𝑦 = 𝑉 → (𝑦𝐴) = (𝑉𝐴))
2322neeq1d 2853 . . . . . . . 8 (𝑦 = 𝑉 → ((𝑦𝐴) ≠ ∅ ↔ (𝑉𝐴) ≠ ∅))
24 ineq2 3808 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
2524ineq1d 3813 . . . . . . . . 9 (𝑦 = 𝑉 → ((𝑈𝑦) ∩ 𝐴) = ((𝑈𝑉) ∩ 𝐴))
2625eqeq1d 2624 . . . . . . . 8 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑉) ∩ 𝐴) = ∅))
2723, 263anbi23d 1402 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅)))
28 sseqin2 3817 . . . . . . . . 9 (𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) = 𝐴)
2928necon3bbii 2841 . . . . . . . 8 𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)
30 uneq2 3761 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
3130sseq2d 3633 . . . . . . . . 9 (𝑦 = 𝑉 → (𝐴 ⊆ (𝑈𝑦) ↔ 𝐴 ⊆ (𝑈𝑉)))
3231notbid 308 . . . . . . . 8 (𝑦 = 𝑉 → (¬ 𝐴 ⊆ (𝑈𝑦) ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3329, 32syl5bbr 274 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3427, 33imbi12d 334 . . . . . 6 (𝑦 = 𝑉 → ((((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3521, 34rspc2v 3322 . . . . 5 ((𝑈𝐽𝑉𝐽) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3610, 11, 35syl2anc 693 . . . 4 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
379, 36mpid 44 . . 3 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → ¬ 𝐴 ⊆ (𝑈𝑉)))
385, 37sylbid 230 . 2 (𝜑 → ((𝐽t 𝐴) ∈ Conn → ¬ 𝐴 ⊆ (𝑈𝑉)))
391, 38mt2d 131 1 (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cun 3572  cin 3573  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by:  iunconnlem  21230  clsconn  21233  reconnlem1  22629  ordtconnlem1  29970
  Copyright terms: Public domain W3C validator