Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Visualization version   GIF version

Theorem dia2dimlem3 36355
Description: Lemma for dia2dim 36366. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l = (le‘𝐾)
dia2dimlem3.j = (join‘𝐾)
dia2dimlem3.m = (meet‘𝐾)
dia2dimlem3.a 𝐴 = (Atoms‘𝐾)
dia2dimlem3.h 𝐻 = (LHyp‘𝐾)
dia2dimlem3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem3.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem3.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem3.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem3.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem3.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem3.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem3.uv (𝜑𝑈𝑉)
dia2dimlem3.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem3.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem3.d (𝜑𝐷𝑇)
dia2dimlem3.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem3 (𝜑 → (𝑅𝐷) = 𝑉)

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 475 . . . . . 6 (𝜑𝐾 ∈ HL)
3 dia2dimlem3.f . . . . . . . . 9 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
43simpld 475 . . . . . . . 8 (𝜑𝐹𝑇)
5 dia2dimlem3.p . . . . . . . 8 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 dia2dimlem3.l . . . . . . . . 9 = (le‘𝐾)
7 dia2dimlem3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dia2dimlem3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 dia2dimlem3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrnel 35425 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
111, 4, 5, 10syl3anc 1326 . . . . . . 7 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1211simpld 475 . . . . . 6 (𝜑 → (𝐹𝑃) ∈ 𝐴)
13 dia2dimlem3.v . . . . . . 7 (𝜑 → (𝑉𝐴𝑉 𝑊))
1413simpld 475 . . . . . 6 (𝜑𝑉𝐴)
15 dia2dimlem3.j . . . . . . 7 = (join‘𝐾)
166, 15, 7hlatlej2 34662 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
172, 12, 14, 16syl3anc 1326 . . . . 5 (𝜑𝑉 ((𝐹𝑃) 𝑉))
18 hllat 34650 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
192, 18syl 17 . . . . . 6 (𝜑𝐾 ∈ Lat)
20 eqid 2622 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7atbase 34576 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2214, 21syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
2320, 15, 7hlatjcl 34653 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
242, 12, 14, 23syl3anc 1326 . . . . . 6 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
25 dia2dimlem3.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
266, 7, 8, 9, 25trlat 35456 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
271, 5, 3, 26syl3anc 1326 . . . . . . 7 (𝜑 → (𝑅𝐹) ∈ 𝐴)
28 dia2dimlem3.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
2928simpld 475 . . . . . . 7 (𝜑𝑈𝐴)
3020, 15, 7hlatjcl 34653 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
312, 27, 29, 30syl3anc 1326 . . . . . 6 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
32 dia2dimlem3.m . . . . . . 7 = (meet‘𝐾)
3320, 6, 32latmlem2 17082 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))) → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3419, 22, 24, 31, 33syl13anc 1328 . . . . 5 (𝜑 → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3517, 34mpd 15 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
36 dia2dimlem3.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
3715, 7hlatjcom 34654 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
382, 29, 14, 37syl3anc 1326 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
3936, 38breqtrd 4679 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
40 dia2dimlem3.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
416, 15, 7hlatexch2 34682 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
422, 27, 14, 29, 40, 41syl131anc 1339 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
4339, 42mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
4420, 6, 32latleeqm2 17080 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾)) → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4519, 22, 31, 44syl3anc 1326 . . . . 5 (𝜑 → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4643, 45mpbid 222 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) = 𝑉)
47 dia2dimlem3.d . . . . . 6 (𝜑𝐷𝑇)
48 dia2dimlem3.q . . . . . . 7 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
49 dia2dimlem3.uv . . . . . . 7 (𝜑𝑈𝑉)
506, 15, 32, 7, 8, 9, 25, 48, 1, 28, 13, 5, 3, 36, 49, 40dia2dimlem1 36353 . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
516, 15, 32, 7, 8, 9, 25trlval2 35450 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
521, 47, 50, 51syl3anc 1326 . . . . 5 (𝜑 → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
5348a1i 11 . . . . . . . . 9 (𝜑𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
54 dia2dimlem3.dv . . . . . . . . 9 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
5553, 54oveq12d 6668 . . . . . . . 8 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)))
565simpld 475 . . . . . . . . . 10 (𝜑𝑃𝐴)
5720, 15, 7hlatjcl 34653 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
582, 56, 29, 57syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
596, 15, 7hlatlej1 34661 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → (𝐹𝑃) ((𝐹𝑃) 𝑉))
602, 12, 14, 59syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐹𝑃) ((𝐹𝑃) 𝑉))
6120, 6, 15, 32, 7atmod4i1 35152 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) 𝑉)) → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
622, 12, 58, 24, 60, 61syl131anc 1339 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
6315, 7hlatj32 34658 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
642, 56, 29, 12, 63syl13anc 1328 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
6564oveq1d 6665 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6655, 62, 653eqtrd 2660 . . . . . . 7 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6766oveq1d 6665 . . . . . 6 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊))
68 hlol 34648 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
692, 68syl 17 . . . . . . 7 (𝜑𝐾 ∈ OL)
7020, 15, 7hlatjcl 34653 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
712, 56, 12, 70syl3anc 1326 . . . . . . . 8 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
7220, 7atbase 34576 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7329, 72syl 17 . . . . . . . 8 (𝜑𝑈 ∈ (Base‘𝐾))
7420, 15latjcl 17051 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
7519, 71, 73, 74syl3anc 1326 . . . . . . 7 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
761simprd 479 . . . . . . . 8 (𝜑𝑊𝐻)
7720, 8lhpbase 35284 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7876, 77syl 17 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐾))
7920, 32latm32 34518 . . . . . . 7 ((𝐾 ∈ OL ∧ (((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
8069, 75, 24, 78, 79syl13anc 1328 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
816, 15, 32, 7, 8, 9, 25trlval2 35450 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
821, 4, 5, 81syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8382oveq1d 6665 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑈))
8428simprd 479 . . . . . . . . 9 (𝜑𝑈 𝑊)
8520, 6, 15, 32, 7atmod4i1 35152 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
862, 29, 71, 78, 84, 85syl131anc 1339 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
8783, 86eqtr2d 2657 . . . . . . 7 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑈) 𝑊) = ((𝑅𝐹) 𝑈))
8887oveq1d 6665 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8967, 80, 883eqtrd 2660 . . . . 5 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
9052, 89eqtr2d 2657 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)) = (𝑅𝐷))
9135, 46, 903brtr3d 4684 . . 3 (𝜑𝑉 (𝑅𝐷))
92 hlatl 34647 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
932, 92syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
94 hlop 34649 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
952, 94syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
96 eqid 2622 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
97 eqid 2622 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9896, 97, 70ltat 34578 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑉𝐴) → (0.‘𝐾)(lt‘𝐾)𝑉)
9995, 14, 98syl2anc 693 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑉)
100 hlpos 34652 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1012, 100syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
10220, 96op0cl 34471 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10395, 102syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
10420, 8, 9, 25trlcl 35451 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝑅𝐷) ∈ (Base‘𝐾))
1051, 47, 104syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑅𝐷) ∈ (Base‘𝐾))
10620, 6, 97pltletr 16971 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑅𝐷) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
107101, 103, 22, 105, 106syl13anc 1328 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
10899, 91, 107mp2and 715 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷))
10920, 97, 96opltn0 34477 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐷) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
11095, 105, 109syl2anc 693 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
111108, 110mpbid 222 . . . . . 6 (𝜑 → (𝑅𝐷) ≠ (0.‘𝐾))
112111neneqd 2799 . . . . 5 (𝜑 → ¬ (𝑅𝐷) = (0.‘𝐾))
11396, 7, 8, 9, 25trlator0 35458 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
1141, 47, 113syl2anc 693 . . . . . . 7 (𝜑 → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
115114orcomd 403 . . . . . 6 (𝜑 → ((𝑅𝐷) = (0.‘𝐾) ∨ (𝑅𝐷) ∈ 𝐴))
116115ord 392 . . . . 5 (𝜑 → (¬ (𝑅𝐷) = (0.‘𝐾) → (𝑅𝐷) ∈ 𝐴))
117112, 116mpd 15 . . . 4 (𝜑 → (𝑅𝐷) ∈ 𝐴)
1186, 7atcmp 34598 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑉𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11993, 14, 117, 118syl3anc 1326 . . 3 (𝜑 → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
12091, 119mpbid 222 . 2 (𝜑𝑉 = (𝑅𝐷))
121120eqcomd 2628 1 (𝜑 → (𝑅𝐷) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  Posetcpo 16940  ltcplt 16941  joincjn 16944  meetcmee 16945  0.cp0 17037  Latclat 17045  OPcops 34459  OLcol 34461  Atomscatm 34550  AtLatcal 34551  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  dia2dimlem5  36357
  Copyright terms: Public domain W3C validator