Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Structured version   Visualization version   GIF version

Theorem dia2dimlem1 36353
Description: Lemma for dia2dim 36366. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l = (le‘𝐾)
dia2dimlem1.j = (join‘𝐾)
dia2dimlem1.m = (meet‘𝐾)
dia2dimlem1.a 𝐴 = (Atoms‘𝐾)
dia2dimlem1.h 𝐻 = (LHyp‘𝐾)
dia2dimlem1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem1.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem1.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem1.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem1.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem1.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem1.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem1.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem1.uv (𝜑𝑈𝑉)
dia2dimlem1.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
Assertion
Ref Expression
dia2dimlem1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
2 dia2dimlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
32simpld 475 . . . 4 (𝜑𝐾 ∈ HL)
4 dia2dimlem1.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 475 . . . 4 (𝜑𝑃𝐴)
6 dia2dimlem1.f . . . . 5 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
7 dia2dimlem1.l . . . . . 6 = (le‘𝐾)
8 dia2dimlem1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dia2dimlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 dia2dimlem1.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 dia2dimlem1.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 35456 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
132, 4, 6, 12syl3anc 1326 . . . 4 (𝜑 → (𝑅𝐹) ∈ 𝐴)
14 dia2dimlem1.u . . . . 5 (𝜑 → (𝑈𝐴𝑈 𝑊))
1514simpld 475 . . . 4 (𝜑𝑈𝐴)
166simpld 475 . . . . . 6 (𝜑𝐹𝑇)
177, 8, 9, 10ltrnel 35425 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
182, 16, 4, 17syl3anc 1326 . . . . 5 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1918simpld 475 . . . 4 (𝜑 → (𝐹𝑃) ∈ 𝐴)
20 dia2dimlem1.v . . . . 5 (𝜑 → (𝑉𝐴𝑉 𝑊))
2120simpld 475 . . . 4 (𝜑𝑉𝐴)
224simprd 479 . . . . . 6 (𝜑 → ¬ 𝑃 𝑊)
237, 9, 10, 11trlle 35471 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
242, 16, 23syl2anc 693 . . . . . . . 8 (𝜑 → (𝑅𝐹) 𝑊)
2514simprd 479 . . . . . . . 8 (𝜑𝑈 𝑊)
26 hllat 34650 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
273, 26syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Lat)
28 eqid 2622 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2928, 8atbase 34576 . . . . . . . . . 10 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
3013, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ (Base‘𝐾))
3128, 8atbase 34576 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3215, 31syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ (Base‘𝐾))
332simprd 479 . . . . . . . . . 10 (𝜑𝑊𝐻)
3428, 9lhpbase 35284 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
36 dia2dimlem1.j . . . . . . . . . 10 = (join‘𝐾)
3728, 7, 36latjle12 17062 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3827, 30, 32, 35, 37syl13anc 1328 . . . . . . . 8 (𝜑 → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3924, 25, 38mpbi2and 956 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑈) 𝑊)
4028, 8atbase 34576 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
415, 40syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
4228, 36, 8hlatjcl 34653 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
433, 13, 15, 42syl3anc 1326 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
4428, 7lattr 17056 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4527, 41, 43, 35, 44syl13anc 1328 . . . . . . 7 (𝜑 → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4639, 45mpan2d 710 . . . . . 6 (𝜑 → (𝑃 ((𝑅𝐹) 𝑈) → 𝑃 𝑊))
4722, 46mtod 189 . . . . 5 (𝜑 → ¬ 𝑃 ((𝑅𝐹) 𝑈))
4820simprd 479 . . . . . . 7 (𝜑𝑉 𝑊)
4918simprd 479 . . . . . . 7 (𝜑 → ¬ (𝐹𝑃) 𝑊)
50 nbrne2 4673 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → 𝑉 ≠ (𝐹𝑃))
5148, 49, 50syl2anc 693 . . . . . 6 (𝜑𝑉 ≠ (𝐹𝑃))
5251necomd 2849 . . . . 5 (𝜑 → (𝐹𝑃) ≠ 𝑉)
5347, 52jca 554 . . . 4 (𝜑 → (¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉))
5427adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝐾 ∈ Lat)
5541adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
5628, 36, 8hlatjcl 34653 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑈𝐴) → (𝑉 𝑈) ∈ (Base‘𝐾))
573, 21, 15, 56syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) ∈ (Base‘𝐾))
5857adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) ∈ (Base‘𝐾))
5935adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑊 ∈ (Base‘𝐾))
607, 36, 8hlatlej2 34662 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
613, 19, 21, 60syl3anc 1326 . . . . . . . . . . 11 (𝜑𝑉 ((𝐹𝑃) 𝑉))
6261adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 ((𝐹𝑃) 𝑉))
63 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑃 𝑈) = ((𝐹𝑃) 𝑉))
6462, 63breqtrrd 4681 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 (𝑃 𝑈))
65 dia2dimlem1.uv . . . . . . . . . . . 12 (𝜑𝑈𝑉)
6665necomd 2849 . . . . . . . . . . 11 (𝜑𝑉𝑈)
677, 36, 8hlatexch2 34682 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴𝑃𝐴𝑈𝐴) ∧ 𝑉𝑈) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
683, 21, 5, 15, 66, 67syl131anc 1339 . . . . . . . . . 10 (𝜑 → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6968adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
7064, 69mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 (𝑉 𝑈))
7128, 8atbase 34576 . . . . . . . . . . . 12 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
7221, 71syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ (Base‘𝐾))
7328, 7, 36latjle12 17062 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7427, 72, 32, 35, 73syl13anc 1328 . . . . . . . . . 10 (𝜑 → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7548, 25, 74mpbi2and 956 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) 𝑊)
7675adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) 𝑊)
7728, 7, 54, 55, 58, 59, 70, 76lattrd 17058 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 𝑊)
7877ex 450 . . . . . 6 (𝜑 → ((𝑃 𝑈) = ((𝐹𝑃) 𝑉) → 𝑃 𝑊))
7978necon3bd 2808 . . . . 5 (𝜑 → (¬ 𝑃 𝑊 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉)))
8022, 79mpd 15 . . . 4 (𝜑 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉))
817, 36, 8hlatlej2 34662 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
823, 5, 19, 81syl3anc 1326 . . . . . 6 (𝜑 → (𝐹𝑃) (𝑃 (𝐹𝑃)))
83 dia2dimlem1.m . . . . . . . . . 10 = (meet‘𝐾)
847, 36, 83, 8, 9, 10, 11trlval2 35450 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
852, 16, 4, 84syl3anc 1326 . . . . . . . 8 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8685oveq2d 6666 . . . . . . 7 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)))
8728, 36, 8hlatjcl 34653 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
883, 5, 19, 87syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
897, 36, 8hlatlej1 34661 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
903, 5, 19, 89syl3anc 1326 . . . . . . . . 9 (𝜑𝑃 (𝑃 (𝐹𝑃)))
9128, 7, 36, 83, 8atmod3i1 35150 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
923, 5, 88, 35, 90, 91syl131anc 1339 . . . . . . . 8 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
93 eqid 2622 . . . . . . . . . . . 12 (1.‘𝐾) = (1.‘𝐾)
947, 36, 93, 8, 9lhpjat2 35307 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
952, 4, 94syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑃 𝑊) = (1.‘𝐾))
9695oveq2d 6666 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = ((𝑃 (𝐹𝑃)) (1.‘𝐾)))
97 hlol 34648 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
983, 97syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ OL)
9928, 83, 93olm11 34514 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
10098, 88, 99syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
10196, 100eqtrd 2656 . . . . . . . 8 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = (𝑃 (𝐹𝑃)))
10292, 101eqtrd 2656 . . . . . . 7 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = (𝑃 (𝐹𝑃)))
10386, 102eqtrd 2656 . . . . . 6 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
10482, 103breqtrrd 4681 . . . . 5 (𝜑 → (𝐹𝑃) (𝑃 (𝑅𝐹)))
105 dia2dimlem1.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
10636, 8hlatjcom 34654 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
1073, 15, 21, 106syl3anc 1326 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
108105, 107breqtrd 4679 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
109 dia2dimlem1.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
1107, 36, 8hlatexch2 34682 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
1113, 13, 21, 15, 109, 110syl131anc 1339 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
112108, 111mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
113104, 112jca 554 . . . 4 (𝜑 → ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))
1147, 36, 83, 8ps-2c 34814 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) ∧ ((¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉) ∧ (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉) ∧ ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1153, 5, 13, 15, 19, 21, 53, 80, 113, 114syl333anc 1358 . . 3 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1161, 115syl5eqel 2705 . 2 (𝜑𝑄𝐴)
11728, 36, 8hlatjcl 34653 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
1183, 5, 15, 117syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
11928, 36, 8hlatjcl 34653 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
1203, 19, 21, 119syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
12128, 7, 83latmle1 17076 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
12227, 118, 120, 121syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
1231, 122syl5eqbr 4688 . . . . . . . . . 10 (𝜑𝑄 (𝑃 𝑈))
12428, 8atbase 34576 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
125116, 124syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘𝐾))
12628, 7, 83latlem12 17078 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
12727, 125, 118, 35, 126syl13anc 1328 . . . . . . . . . . 11 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
128127biimpd 219 . . . . . . . . . 10 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊)))
129123, 128mpand 711 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 ((𝑃 𝑈) 𝑊)))
130129imp 445 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊))
131 eqid 2622 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
1327, 83, 131, 8, 9lhpmat 35316 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
1332, 4, 132syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑊) = (0.‘𝐾))
134133oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
13528, 7, 36, 83, 8atmod4i1 35152 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
1363, 15, 41, 35, 25, 135syl131anc 1339 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
13728, 36, 131olj02 34513 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
13898, 32, 137syl2anc 693 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑈) = 𝑈)
139134, 136, 1383eqtr3d 2664 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) 𝑊) = 𝑈)
140139adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → ((𝑃 𝑈) 𝑊) = 𝑈)
141130, 140breqtrd 4679 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑈)
142 hlatl 34647 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1433, 142syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ AtLat)
144143adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝐾 ∈ AtLat)
145116adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄𝐴)
14615adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑈𝐴)
1477, 8atcmp 34598 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈𝑄 = 𝑈))
148144, 145, 146, 147syl3anc 1326 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑈𝑄 = 𝑈))
149141, 148mpbid 222 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑈)
15028, 7, 83latmle2 17077 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
15127, 118, 120, 150syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
1521, 151syl5eqbr 4688 . . . . . . . . . 10 (𝜑𝑄 ((𝐹𝑃) 𝑉))
15328, 7, 83latlem12 17078 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
15427, 125, 120, 35, 153syl13anc 1328 . . . . . . . . . . 11 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
155154biimpd 219 . . . . . . . . . 10 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
156152, 155mpand 711 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
157156imp 445 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊))
1587, 83, 131, 8, 9lhpmat 35316 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
1592, 18, 158syl2anc 693 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
160159oveq1d 6665 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = ((0.‘𝐾) 𝑉))
16128, 8atbase 34576 . . . . . . . . . . . 12 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ (Base‘𝐾))
16219, 161syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ (Base‘𝐾))
16328, 7, 36, 83, 8atmod4i1 35152 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
1643, 21, 162, 35, 48, 163syl131anc 1339 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
16528, 36, 131olj02 34513 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑉) = 𝑉)
16698, 72, 165syl2anc 693 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑉) = 𝑉)
167160, 164, 1663eqtr3d 2664 . . . . . . . . 9 (𝜑 → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
168167adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
169157, 168breqtrd 4679 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑉)
17021adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑉𝐴)
1717, 8atcmp 34598 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑉𝐴) → (𝑄 𝑉𝑄 = 𝑉))
172144, 145, 170, 171syl3anc 1326 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑉𝑄 = 𝑉))
173169, 172mpbid 222 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑉)
174149, 173eqtr3d 2658 . . . . 5 ((𝜑𝑄 𝑊) → 𝑈 = 𝑉)
175174ex 450 . . . 4 (𝜑 → (𝑄 𝑊𝑈 = 𝑉))
176175necon3ad 2807 . . 3 (𝜑 → (𝑈𝑉 → ¬ 𝑄 𝑊))
17765, 176mpd 15 . 2 (𝜑 → ¬ 𝑄 𝑊)
178116, 177jca 554 1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  0.cp0 17037  1.cp1 17038  Latclat 17045  OLcol 34461  Atomscatm 34550  AtLatcal 34551  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  dia2dimlem3  36355  dia2dimlem6  36358
  Copyright terms: Public domain W3C validator