MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Visualization version   GIF version

Theorem dislly 21300
Description: The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋

Proof of Theorem dislly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 𝑋 ∈ Locally 𝐴)
2 simpr 477 . . . . . 6 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
3 vex 3203 . . . . . . 7 𝑥 ∈ V
43snelpw 4913 . . . . . 6 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
52, 4sylib 208 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
6 vsnid 4209 . . . . . 6 𝑥 ∈ {𝑥}
76a1i 11 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
8 llyi 21277 . . . . 5 ((𝒫 𝑋 ∈ Locally 𝐴 ∧ {𝑥} ∈ 𝒫 𝑋𝑥 ∈ {𝑥}) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
91, 5, 7, 8syl3anc 1326 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴))
10 simpr1 1067 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 ⊆ {𝑥})
11 simpr2 1068 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑦)
1211snssd 4340 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
1310, 12eqssd 3620 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑦 = {𝑥})
1413oveq2d 6666 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = (𝒫 𝑋t {𝑥}))
15 simplll 798 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑋𝑉)
16 simplr 792 . . . . . . . . . 10 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝑥𝑋)
1716snssd 4340 . . . . . . . . 9 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
18 restdis 20982 . . . . . . . . 9 ((𝑋𝑉 ∧ {𝑥} ⊆ 𝑋) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
1915, 17, 18syl2anc 693 . . . . . . . 8 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
2014, 19eqtrd 2656 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) = 𝒫 {𝑥})
21 simpr3 1069 . . . . . . 7 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → (𝒫 𝑋t 𝑦) ∈ 𝐴)
2220, 21eqeltrrd 2702 . . . . . 6 ((((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) ∧ (𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
2322ex 450 . . . . 5 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → ((𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
2423rexlimdvw 3034 . . . 4 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → (∃𝑦 ∈ 𝒫 𝑋(𝑦 ⊆ {𝑥} ∧ 𝑥𝑦 ∧ (𝒫 𝑋t 𝑦) ∈ 𝐴) → 𝒫 {𝑥} ∈ 𝐴))
259, 24mpd 15 . . 3 (((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) ∧ 𝑥𝑋) → 𝒫 {𝑥} ∈ 𝐴)
2625ralrimiva 2966 . 2 ((𝑋𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴) → ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴)
27 distop 20799 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2827adantr 481 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Top)
29 elpwi 4168 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3029adantl 482 . . . . . . . 8 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
31 ssralv 3666 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
3230, 31syl 17 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴))
33 simprl 794 . . . . . . . . . . . . . 14 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥𝑦)
3433snssd 4340 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑦)
3530adantr 481 . . . . . . . . . . . . 13 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑦𝑋)
3634, 35sstrd 3613 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ⊆ 𝑋)
37 snex 4908 . . . . . . . . . . . . 13 {𝑥} ∈ V
3837elpw 4164 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑋 ↔ {𝑥} ⊆ 𝑋)
3936, 38sylibr 224 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑋)
4037elpw 4164 . . . . . . . . . . . 12 ({𝑥} ∈ 𝒫 𝑦 ↔ {𝑥} ⊆ 𝑦)
4134, 40sylibr 224 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ 𝒫 𝑦)
4239, 41elind 3798 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → {𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦))
43 snidg 4206 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ {𝑥})
4443ad2antrl 764 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑥 ∈ {𝑥})
45 simpll 790 . . . . . . . . . . . 12 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝑋𝑉)
4645, 36, 18syl2anc 693 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) = 𝒫 {𝑥})
47 simprr 796 . . . . . . . . . . 11 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → 𝒫 {𝑥} ∈ 𝐴)
4846, 47eqeltrd 2701 . . . . . . . . . 10 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → (𝒫 𝑋t {𝑥}) ∈ 𝐴)
49 eleq2 2690 . . . . . . . . . . . 12 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
50 oveq2 6658 . . . . . . . . . . . . 13 (𝑢 = {𝑥} → (𝒫 𝑋t 𝑢) = (𝒫 𝑋t {𝑥}))
5150eleq1d 2686 . . . . . . . . . . . 12 (𝑢 = {𝑥} → ((𝒫 𝑋t 𝑢) ∈ 𝐴 ↔ (𝒫 𝑋t {𝑥}) ∈ 𝐴))
5249, 51anbi12d 747 . . . . . . . . . . 11 (𝑢 = {𝑥} → ((𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴) ↔ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)))
5352rspcev 3309 . . . . . . . . . 10 (({𝑥} ∈ (𝒫 𝑋 ∩ 𝒫 𝑦) ∧ (𝑥 ∈ {𝑥} ∧ (𝒫 𝑋t {𝑥}) ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5442, 44, 48, 53syl12anc 1324 . . . . . . . . 9 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ (𝑥𝑦 ∧ 𝒫 {𝑥} ∈ 𝐴)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5554expr 643 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ 𝑥𝑦) → (𝒫 {𝑥} ∈ 𝐴 → ∃𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5655ralimdva 2962 . . . . . . 7 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5732, 56syld 47 . . . . . 6 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴 → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
5857imp 445 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
5958an32s 846 . . . 4 (((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) ∧ 𝑦 ∈ 𝒫 𝑋) → ∀𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
6059ralrimiva 2966 . . 3 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴))
61 islly 21271 . . 3 (𝒫 𝑋 ∈ Locally 𝐴 ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑋𝑥𝑦𝑢 ∈ (𝒫 𝑋 ∩ 𝒫 𝑦)(𝑥𝑢 ∧ (𝒫 𝑋t 𝑢) ∈ 𝐴)))
6228, 60, 61sylanbrc 698 . 2 ((𝑋𝑉 ∧ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴) → 𝒫 𝑋 ∈ Locally 𝐴)
6326, 62impbida 877 1 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177  (class class class)co 6650  t crest 16081  Topctop 20698  Locally clly 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-lly 21269
This theorem is referenced by:  disllycmp  21301  dis1stc  21302
  Copyright terms: Public domain W3C validator