MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Visualization version   Unicode version

Theorem dislly 21300
Description: The discrete space  ~P X is locally  A if and only if every singleton space has property 
A. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Distinct variable groups:    x, A    x, V    x, X

Proof of Theorem dislly
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P X  e. Locally  A )
2 simpr 477 . . . . . 6  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  X )
3 vex 3203 . . . . . . 7  |-  x  e. 
_V
43snelpw 4913 . . . . . 6  |-  ( x  e.  X  <->  { x }  e.  ~P X
)
52, 4sylib 208 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  { x }  e.  ~P X
)
6 vsnid 4209 . . . . . 6  |-  x  e. 
{ x }
76a1i 11 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  { x } )
8 llyi 21277 . . . . 5  |-  ( ( ~P X  e. Locally  A  /\  { x }  e.  ~P X  /\  x  e.  {
x } )  ->  E. y  e.  ~P  X ( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
91, 5, 7, 8syl3anc 1326 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  E. y  e.  ~P  X ( y 
C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
10 simpr1 1067 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  C_  { x } )
11 simpr2 1068 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  y )
1211snssd 4340 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  y )
1310, 12eqssd 3620 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  =  { x } )
1413oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ( ~P Xt  { x } ) )
15 simplll 798 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  X  e.  V )
16 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  X )
1716snssd 4340 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  X )
18 restdis 20982 . . . . . . . . 9  |-  ( ( X  e.  V  /\  { x }  C_  X
)  ->  ( ~P Xt  { x } )  =  ~P { x } )
1915, 17, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  { x } )  =  ~P { x } )
2014, 19eqtrd 2656 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ~P { x } )
21 simpr3 1069 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  e.  A
)
2220, 21eqeltrrd 2702 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ~P { x }  e.  A )
2322ex 450 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
2423rexlimdvw 3034 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( E. y  e.  ~P  X
( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
259, 24mpd 15 . . 3  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P { x }  e.  A )
2625ralrimiva 2966 . 2  |-  ( ( X  e.  V  /\  ~P X  e. Locally  A )  ->  A. x  e.  X  ~P { x }  e.  A )
27 distop 20799 . . . 4  |-  ( X  e.  V  ->  ~P X  e.  Top )
2827adantr 481 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e.  Top )
29 elpwi 4168 . . . . . . . . 9  |-  ( y  e.  ~P X  -> 
y  C_  X )
3029adantl 482 . . . . . . . 8  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  y  C_  X )
31 ssralv 3666 . . . . . . . 8  |-  ( y 
C_  X  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
3230, 31syl 17 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
33 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  y )
3433snssd 4340 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  y )
3530adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
y  C_  X )
3634, 35sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  X )
37 snex 4908 . . . . . . . . . . . . 13  |-  { x }  e.  _V
3837elpw 4164 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P X 
<->  { x }  C_  X )
3936, 38sylibr 224 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P X )
4037elpw 4164 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P y 
<->  { x }  C_  y )
4134, 40sylibr 224 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P y )
4239, 41elind 3798 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ( ~P X  i^i  ~P y ) )
43 snidg 4206 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  { x } )
4443ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  { x } )
45 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  X  e.  V )
4645, 36, 18syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  =  ~P { x } )
47 simprr 796 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  ~P { x }  e.  A )
4846, 47eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  e.  A
)
49 eleq2 2690 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( x  e.  u  <->  x  e.  { x }
) )
50 oveq2 6658 . . . . . . . . . . . . 13  |-  ( u  =  { x }  ->  ( ~P Xt  u )  =  ( ~P Xt  { x } ) )
5150eleq1d 2686 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( ( ~P Xt  u
)  e.  A  <->  ( ~P Xt  { x } )  e.  A ) )
5249, 51anbi12d 747 . . . . . . . . . . 11  |-  ( u  =  { x }  ->  ( ( x  e.  u  /\  ( ~P Xt  u )  e.  A
)  <->  ( x  e. 
{ x }  /\  ( ~P Xt  { x } )  e.  A ) ) )
5352rspcev 3309 . . . . . . . . . 10  |-  ( ( { x }  e.  ( ~P X  i^i  ~P y )  /\  (
x  e.  { x }  /\  ( ~P Xt  { x } )  e.  A
) )  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5442, 44, 48, 53syl12anc 1324 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5554expr 643 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  x  e.  y )  ->  ( ~P { x }  e.  A  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5655ralimdva 2962 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  y  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5732, 56syld 47 . . . . . 6  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5857imp 445 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5958an32s 846 . . . 4  |-  ( ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  /\  y  e.  ~P X )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
6059ralrimiva 2966 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
61 islly 21271 . . 3  |-  ( ~P X  e. Locally  A  <->  ( ~P X  e.  Top  /\  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
6228, 60, 61sylanbrc 698 . 2  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e. Locally  A )
6326, 62impbida 877 1  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177  (class class class)co 6650   ↾t crest 16081   Topctop 20698  Locally clly 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-lly 21269
This theorem is referenced by:  disllycmp  21301  dis1stc  21302
  Copyright terms: Public domain W3C validator