MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Structured version   Visualization version   GIF version

Theorem distrlem1pr 9847
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Proof of Theorem distrlem1pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 9840 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-mp 9806 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ {𝑓 ∣ ∃𝑔𝑦𝑧 𝑓 = (𝑔 ·Q )})
3 mulclnq 9769 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelv 9822 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 491 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
653impb 1260 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
7 df-plp 9805 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ {𝑓 ∣ ∃𝑔𝑤𝑥 𝑓 = (𝑔 +Q )})
8 addclnq 9767 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelv 9822 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1079 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1110adantr 481 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
12 simprr 796 . . . . . . . . . . . 12 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
13 simpr 477 . . . . . . . . . . . 12 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
14 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
1514eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
1615biimpac 503 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
17 distrnq 9783 . . . . . . . . . . . . 13 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
1816, 17syl6eq 2672 . . . . . . . . . . . 12 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
1912, 13, 18syl2an 494 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
20 mulclpr 9842 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
21203adant3 1081 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
2221ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
23 mulclpr 9842 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
24233adant2 1080 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
2524ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
26 simpll 790 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦𝐵)
272, 3genpprecl 9823 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
28273adant3 1081 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
2928impl 650 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3029adantlrr 757 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3126, 30sylan2 491 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
32 simplr 792 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧𝐶)
332, 3genpprecl 9823 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
34333adant2 1080 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
3534impl 650 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3635adantlrr 757 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3732, 36sylan2 491 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
387, 8genpprecl 9823 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
3938imp 445 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4022, 25, 31, 37, 39syl22anc 1327 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4119, 40eqeltrd 2701 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4241exp32 631 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦𝐵𝑧𝐶) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4342rexlimdvv 3037 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4411, 43sylbid 230 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4544exp32 631 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4645com34 91 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑣 ∈ (𝐵 +P 𝐶) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4746impd 447 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4847rexlimdvv 3037 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
496, 48sylbid 230 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
5049ssrdv 3609 1 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  (class class class)co 6650   +Q cplq 9677   ·Q cmq 9678  Pcnp 9681   +P cpp 9683   ·P cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806
This theorem is referenced by:  distrpr  9850
  Copyright terms: Public domain W3C validator