MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem4pr Structured version   Visualization version   GIF version

Theorem distrlem4pr 9848
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem4pr (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4pr
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐵P)
2 simprlr 803 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦𝐵)
3 elprnq 9813 . . . . 5 ((𝐵P𝑦𝐵) → 𝑦Q)
41, 2, 3syl2anc 693 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦Q)
5 simp1 1061 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐴P)
6 simprl 794 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑓𝐴)
7 elprnq 9813 . . . . 5 ((𝐴P𝑓𝐴) → 𝑓Q)
85, 6, 7syl2an 494 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓Q)
9 simpl3 1066 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐶P)
10 simprrr 805 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧𝐶)
11 elprnq 9813 . . . . 5 ((𝐶P𝑧𝐶) → 𝑧Q)
129, 10, 11syl2anc 693 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧Q)
13 vex 3203 . . . . . 6 𝑥 ∈ V
14 vex 3203 . . . . . 6 𝑓 ∈ V
15 ltmnq 9794 . . . . . 6 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
16 vex 3203 . . . . . 6 𝑦 ∈ V
17 mulcomnq 9775 . . . . . 6 (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤)
1813, 14, 15, 16, 17caovord2 6846 . . . . 5 (𝑦Q → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦)))
19 mulclnq 9769 . . . . . 6 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
20 ovex 6678 . . . . . . 7 (𝑥 ·Q 𝑦) ∈ V
21 ovex 6678 . . . . . . 7 (𝑓 ·Q 𝑦) ∈ V
22 ltanq 9793 . . . . . . 7 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
23 ovex 6678 . . . . . . 7 (𝑓 ·Q 𝑧) ∈ V
24 addcomnq 9773 . . . . . . 7 (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤)
2520, 21, 22, 23, 24caovord2 6846 . . . . . 6 ((𝑓 ·Q 𝑧) ∈ Q → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2619, 25syl 17 . . . . 5 ((𝑓Q𝑧Q) → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2718, 26sylan9bb 736 . . . 4 ((𝑦Q ∧ (𝑓Q𝑧Q)) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
284, 8, 12, 27syl12anc 1324 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
29 simpl1 1064 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐴P)
30 addclpr 9840 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
31303adant1 1079 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
3231adantr 481 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐵 +P 𝐶) ∈ P)
33 mulclpr 9842 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
3429, 32, 33syl2anc 693 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
35 distrnq 9783 . . . . 5 (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))
36 simprrl 804 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓𝐴)
37 df-plp 9805 . . . . . . . . 9 +P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 +Q )})
38 addclnq 9767 . . . . . . . . 9 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
3937, 38genpprecl 9823 . . . . . . . 8 ((𝐵P𝐶P) → ((𝑦𝐵𝑧𝐶) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)))
4039imp 445 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝑦𝐵𝑧𝐶)) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
411, 9, 2, 10, 40syl22anc 1327 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
42 df-mp 9806 . . . . . . . 8 ·P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 ·Q )})
43 mulclnq 9769 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
4442, 43genpprecl 9823 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4544imp 445 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4629, 32, 36, 41, 45syl22anc 1327 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4735, 46syl5eqelr 2706 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
48 prcdnq 9815 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4934, 47, 48syl2anc 693 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
5028, 49sylbid 230 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
51 simpll 790 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑥𝐴)
52 elprnq 9813 . . . . 5 ((𝐴P𝑥𝐴) → 𝑥Q)
535, 51, 52syl2an 494 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥Q)
54 vex 3203 . . . . . 6 𝑧 ∈ V
5514, 13, 15, 54, 17caovord2 6846 . . . . 5 (𝑧Q → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧)))
56 mulclnq 9769 . . . . . 6 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
57 ltanq 9793 . . . . . 6 ((𝑥 ·Q 𝑦) ∈ Q → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5856, 57syl 17 . . . . 5 ((𝑥Q𝑦Q) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5955, 58sylan9bbr 737 . . . 4 (((𝑥Q𝑦Q) ∧ 𝑧Q) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
6053, 4, 12, 59syl21anc 1325 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
61 distrnq 9783 . . . . 5 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
62 simprll 802 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥𝐴)
6342, 43genpprecl 9823 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6463imp 445 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6529, 32, 62, 41, 64syl22anc 1327 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6661, 65syl5eqelr 2706 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
67 prcdnq 9815 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6834, 66, 67syl2anc 693 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6960, 68sylbid 230 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
70 ltsonq 9791 . . . . 5 <Q Or Q
71 sotrieq 5062 . . . . 5 (( <Q Or Q ∧ (𝑥Q𝑓Q)) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7270, 71mpan 706 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7353, 8, 72syl2anc 693 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
74 oveq1 6657 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
7574oveq2d 6666 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7661, 75syl5eq 2668 . . . . 5 (𝑥 = 𝑓 → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7776eleq1d 2686 . . . 4 (𝑥 = 𝑓 → ((𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7865, 77syl5ibcom 235 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7973, 78sylbird 250 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
8050, 69, 79ecase3d 984 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wcel 1990   class class class wbr 4653   Or wor 5034  (class class class)co 6650  Qcnq 9674   +Q cplq 9677   ·Q cmq 9678   <Q cltq 9680  Pcnp 9681   +P cpp 9683   ·P cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806
This theorem is referenced by:  distrlem5pr  9849
  Copyright terms: Public domain W3C validator