MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   GIF version

Theorem distrlem5pr 9849
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Proof of Theorem distrlem5pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 9842 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1081 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 9842 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 1080 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-plp 9805 . . . . 5 +P = (𝑥P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑥𝑦 𝑓 = (𝑔 +Q )})
6 addclnq 9767 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelv 9822 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 693 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
9 df-mp 9806 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑔𝑤𝑣 𝑥 = (𝑔 ·Q )})
10 mulclnq 9769 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelv 9822 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 1080 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 740 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) ↔ (𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧))))
14 df-mp 9806 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑤𝑣 𝑓 = (𝑔 ·Q )})
1514, 10genpelv 9822 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 1081 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4pr 9848 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
18 oveq12 6659 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2632 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2119, 20syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
2221imp 445 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2317, 22syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2423exp4b 632 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2524com3l 89 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2625exp4b 632 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ((𝑓𝐴𝑧𝐶) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2726com23 86 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2827rexlimivv 3036 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))))
2928rexlimdvv 3037 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3029com3r 87 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3116, 30sylbid 230 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3231impd 447 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3313, 32sylbid 230 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3433rexlimdvv 3037 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
358, 34sylbid 230 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
3635ssrdv 3609 1 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  (class class class)co 6650   +Q cplq 9677   ·Q cmq 9678  Pcnp 9681   +P cpp 9683   ·P cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806
This theorem is referenced by:  distrpr  9850
  Copyright terms: Public domain W3C validator