![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 633. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 450 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: exp4a 633 exp43 640 somo 5069 tz7.7 5749 f1oweALT 7152 onfununi 7438 odi 7659 omeu 7665 nndi 7703 inf3lem2 8526 axdc3lem2 9273 genpnmax 9829 mulclprlem 9841 distrlem5pr 9849 reclem4pr 9872 lemul12a 10881 sup2 10979 nnmulcl 11043 zbtwnre 11786 elfz0fzfz0 12444 fzofzim 12514 fzo1fzo0n0 12518 elincfzoext 12525 elfzodifsumelfzo 12533 le2sq2 12939 expnbnd 12993 swrdswrd 13460 swrdccat3blem 13495 climbdd 14402 dvdslegcd 15226 oddprmgt2 15411 unbenlem 15612 infpnlem1 15614 prmgaplem6 15760 lmodvsdi 18886 lspsolvlem 19142 lbsextlem2 19159 gsummoncoe1 19674 cpmatmcllem 20523 mp2pm2mplem4 20614 1stccnp 21265 itg2le 23506 ewlkle 26501 clwlkclwwlklem2a 26899 3vfriswmgr 27142 frgrwopreg 27187 frgr2wwlk1 27193 frgrreg 27252 spansneleq 28429 elspansn4 28432 cvmdi 29183 atcvat3i 29255 mdsymlem3 29264 slmdvsdi 29768 mclsppslem 31480 dfon2lem8 31695 soseq 31751 heicant 33444 areacirclem1 33500 areacirclem2 33501 areacirclem4 33503 areacirc 33505 fzmul 33537 cvlexch1 34615 hlrelat2 34689 cvrat3 34728 snatpsubN 35036 pmaple 35047 fzopredsuc 41333 gbegt5 41649 |
Copyright terms: Public domain | W3C validator |