MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   Unicode version

Theorem distrlem5pr 9849
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  C_  ( A  .P.  ( B  +P.  C ) ) )

Proof of Theorem distrlem5pr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 9842 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1081 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 9842 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1080 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-plp 9805 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  { f  |  E. g  e.  x  E. h  e.  y  f  =  ( g  +Q  h ) } )
6 addclnq 9767 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelv 9822 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) )  <->  E. v  e.  ( A  .P.  B
) E. u  e.  ( A  .P.  C
) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 693 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) )  <->  E. v  e.  ( A  .P.  B
) E. u  e.  ( A  .P.  C
) w  =  ( v  +Q  u ) ) )
9 df-mp 9806 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. g  e.  w  E. h  e.  v  x  =  ( g  .Q  h ) } )
10 mulclnq 9769 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelv 9822 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( A  .P.  C )  <->  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z ) ) )
12113adant2 1080 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( A  .P.  C )  <->  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z
) ) )
1312anbi2d 740 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  u  e.  ( A  .P.  C ) )  <->  ( v  e.  ( A  .P.  B
)  /\  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z
) ) ) )
14 df-mp 9806 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { f  |  E. g  e.  w  E. h  e.  v  f  =  ( g  .Q  h ) } )
1514, 10genpelv 9822 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( A  .P.  B )  <->  E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y ) ) )
16153adant3 1081 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( A  .P.  B )  <->  E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y
) ) )
17 distrlem4pr 9848 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
) )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) )
18 oveq12 6659 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) )
2119, 20syl6bi 243 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( A  .P.  ( B  +P.  C ) )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
2221imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) )
2317, 22syl5ibrcom 237 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
) )  ->  (
( ( v  =  ( x  .Q  y
)  /\  u  =  ( f  .Q  z
) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) )
2423exp4b 632 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
)  ->  ( (
v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2524com3l 89 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( f  e.  A  /\  z  e.  C ) )  -> 
( ( v  =  ( x  .Q  y
)  /\  u  =  ( f  .Q  z
) )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2625exp4b 632 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( f  e.  A  /\  z  e.  C )  ->  (
v  =  ( x  .Q  y )  -> 
( u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) ) ) ) ) )
2726com23 86 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( v  =  ( x  .Q  y )  ->  ( ( f  e.  A  /\  z  e.  C )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2827rexlimivv 3036 . . . . . . . . 9  |-  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  (
( f  e.  A  /\  z  e.  C
)  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2928rexlimdvv 3037 . . . . . . . 8  |-  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  ( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3029com3r 87 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  ( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) ) ) )
3116, 30sylbid 230 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( A  .P.  B )  -> 
( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3231impd 447 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
3313, 32sylbid 230 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  u  e.  ( A  .P.  C ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
3433rexlimdvv 3037 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( A  .P.  B ) E. u  e.  ( A  .P.  C ) w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) )
358, 34sylbid 230 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) )
3635ssrdv 3609 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  C_  ( A  .P.  ( B  +P.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574  (class class class)co 6650    +Q cplq 9677    .Q cmq 9678   P.cnp 9681    +P. cpp 9683    .P. cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806
This theorem is referenced by:  distrpr  9850
  Copyright terms: Public domain W3C validator